Full Text:   <599>

Summary:  <288>

CLC number: TK16

On-line Access: 2018-06-04

Received: 2017-04-12

Revision Accepted: 2017-09-27

Crosschecked: 2018-05-09

Cited: 0

Clicked: 1495

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hao Zhou

https://orcid.org/0000-0001-9779-7703

Ming Cheng

https://orcid.org/0000-0003-3253-6865

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2018 Vol.19 No.6 P.479-490

http://doi.org/10.1631/jzus.A1700193


Evaluation of the adhering layer ratio of iron ore granules and its influence on combustion-generated NOx emission in iron ore sintering


Author(s):  Hao Zhou, Ming Cheng, Jia-pei Zhao, Ming-xi Zhou, Zi-hao Liu

Affiliation(s):  State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zhouhao@cmee.zju.edu.cn, itpepc@gmail.com

Key Words:  Iron ore sintering, Granulation, Adhering layer, Adhering ratio, NOx emission


Share this article to: More <<< Previous Article|

Hao Zhou, Ming Cheng, Jia-pei Zhao, Ming-xi Zhou, Zi-hao Liu. Evaluation of the adhering layer ratio of iron ore granules and its influence on combustion-generated NOx emission in iron ore sintering[J]. Journal of Zhejiang University Science A, 2018, 19(6): 479-490.

@article{title="Evaluation of the adhering layer ratio of iron ore granules and its influence on combustion-generated NOx emission in iron ore sintering",
author="Hao Zhou, Ming Cheng, Jia-pei Zhao, Ming-xi Zhou, Zi-hao Liu",
journal="Journal of Zhejiang University Science A",
volume="19",
number="6",
pages="479-490",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1700193"
}

%0 Journal Article
%T Evaluation of the adhering layer ratio of iron ore granules and its influence on combustion-generated NOx emission in iron ore sintering
%A Hao Zhou
%A Ming Cheng
%A Jia-pei Zhao
%A Ming-xi Zhou
%A Zi-hao Liu
%J Journal of Zhejiang University SCIENCE A
%V 19
%N 6
%P 479-490
%@ 1673-565X
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1700193

TY - JOUR
T1 - Evaluation of the adhering layer ratio of iron ore granules and its influence on combustion-generated NOx emission in iron ore sintering
A1 - Hao Zhou
A1 - Ming Cheng
A1 - Jia-pei Zhao
A1 - Ming-xi Zhou
A1 - Zi-hao Liu
J0 - Journal of Zhejiang University Science A
VL - 19
IS - 6
SP - 479
EP - 490
%@ 1673-565X
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1700193


Abstract: 
In iron ore sintering, the granulation process is the first and an important step. As the fine particles adhere to the coarse coke particles, the NOx emission generated from coke combustion may be expected to be influenced by that adhering layer. In this study, the granule size distributions and adhering ratios were evaluated by a granulation model. granulation experiments were also carried out to obtain the granule size distribution and adhering ratio. The influence of the adhering layer on NOx emissions from the combustion of S type granules was studied by tube furnace experiments. Conclusions include: (1) The adhering ratio predicted from the granulation model can be used as a qualitative index for the evaluation of NOx emission from coke combustion. (2) The influence of the adhering layer on NOx emissions was enhanced with increasing adhering layer thickness of S type granules, and the NOx reduction was enhanced at higher temperatures (around 1373 K), but weakened at lower temperatures (around 1173 K).

铁矿石制粒粘附比预测及其对烧结过程中NOx生成的影响

目的:铁矿石烧结需要对原料进行制粒,而焦炭被细粉颗粒覆盖,会影响其燃烧. 本文旨在建立制粒模型分析粘附比例和粘附层的有效面积,并研究铁矿石制粒粘附层厚度对NOx生成的影响.
创新点:1. 建立制粒模型计算多组分原料制粒的粘附比; 2. 结合制粒模型计算粘附比和在不同粘附比下进行NOx释放实验,并对制粒中的焦炭进行合理分布.
方法:1. 通过理论分析,建立原料颗粒参数与制粒粒径分布的关系(公式(1)~(11)); 2. 通过实验和制粒模型分析水分以及各种原料的特性对制粒粒径分布的影响(图4~10); 3. 通过管式炉实验分析不同粘附层厚度对NOx释放的影响(图12和13).
结论:1. 制粒模型可以用于多组分原料的制粒粒径分布和粘附比预测; 2. 粘附层对焦炭氮释放有较大影响,需要对烧结中的燃料进行合理分布; 3. 通过原料成分和对粘附比的预测,可定性分析铁矿石烧结过程中NOx的排放.

关键词:铁矿石烧结;制粒;粘附层;粘附比;NOx

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen YG, Guo ZC, Wang Z, 2008. Application of modified coke to NOx reduction with recycling flue gas during iron ore sintering process. ISIJ International, 48(11):1517-1523.

[2]Fan XH, Yu ZY, Gan M, et al., 2015. Elimination behaviors of NOx in the sintering process with flue gas recirculation. ISIJ International, 55(10):2074-2081.

[3]Gan M, Fan XH, Chen XL, et al., 2012. Reduction of pollutant emission in iron ore sintering process by applying biomass fuels. ISIJ International, 52(9):1574-1578.

[4]Gan M, Fan XH, Ji ZY, et al., 2014. Effect of distribution of biomass fuel in granules on iron ore sintering and NOx emission. Ironmaking & Steelmaking, 41(6):430-434.

[5]Gan M, Fan XH, Ji ZY, et al., 2015. Optimising method for improving granulation effectiveness of iron ore sintering mixture. Ironmaking and Steelmaking, 42(5):351-357.

[6]Gan M, Fan XH, Lv W, et al., 2016a. Fuel pre-granulation for reducing NOx emissions from the iron ore sintering process. Powder Technology, 301:478-485.

[7]Gan M, Fan XH, Yu ZY, et al., 2016b. A laboratory-based investigation into the catalytic reduction of NOx in iron ore sintering with flue gas recirculation. Ironmaking & Steelmaking, 43(6):442-449.

[8]Hida Y, Sasaki M, Enokido T, et al., 1982. Effect of the existing state of coke breeze in quasi-particles of raw mix on coke combustion in the sintering process. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, 68(3):400-409 (in Japanese).

[9]Kasai E, Omori Y, 1986. Combustion-rate of coke at different existing states prepared by fine alumina. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, 72(10):1537-1544 (in Japanese).

[10]Kasai E, Wu SL, Sugiyama T, et al., 1992. Combustion-rate and NO emission during combustion of coke granules in packed-beds. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, 78(7):1005-1012 (in Japanese).

[11]Katayama K, Kasama S, 2015. Influence of lime coating coke on NOx concentration in sintering process. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, 101(1):11-18 (in Japanese).

[12]Kawaguchi T, Hara M, 2013. Utilization of biomass for iron ore sintering. ISIJ International, 53(9):1599-1606.

[13]Kristensen HG, Holm P, Schaefer T, 1985. Mechanical-properties of moist agglomerates in relation to granulation mechanisms part II. Effects of particle-size distribution. Powder Technology, 44(3):239-247.

[14]Litster JD, Waters AG, 1988. Influence of the material properties of iron-ore sinter feed on granulation effectiveness. Powder Technology, 55(2):141-151.

[15]Litster JD, Waters AG, 1990. Kinetics of iron-ore sinter feed granulation. Powder Technology, 62(2):125-134.

[16]Litster JD, Waters AG, Nicol SK, 1986. A model for predicting the size distribution of product from a granulating drum. Transactions of the Iron and Steel Institute of Japan, 26(12):1036-1044.

[17]Loo CE, 1991. Role of coke size in sintering of a hematite ore blend. Ironmaking & Steelmaking, 18(1):33-40.

[18]Mo CL, Teo CS, Hamilton I, et al., 1997. Admiring hydrocarbons in raw mix to reduce NOx emission in iron ore sintering process. ISIJ International, 37(4):350-357.

[19]Morioka K, Inaba S, Shimizu M, et al., 2000. Primary application of the “In-Bed-deNOx” process using Ca-Fe oxides in iron ore sintering machines. ISIJ International, 40(3):280-285.

[20]Pevida C, Arenillas A, Rubiera F, et al., 2007. Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms. Fuel, 86(1-2):41-49.

[21]Schubert H, Herrmann W, Rumpf H, 1975. Deformation behavior of agglomerates under tensile stress. Powder Technology, 11(2):121-131.

[22]Teo CS, Mikka RA, Loo CE, 1992. Positioning coke particles in iron-ore sintering. ISIJ International, 32(10):1047-1057.

[23]Waters AG, Litster JD, Nicol SK, 1989. A mathematical-model for the prediction of granule size distribution for multicomponent sinter feed. ISIJ International, 29(4):274-283.

[24]Yang YH, Standish N, 1991. Fundamental mechanisms of pore formation in iron-ore sinter and pellets. ISIJ International, 31(5):468-477.

[25]Zhao JP, Loo CE, Dukino RD, 2015. Modelling fuel combustion in iron ore sintering. Combustion and Flame, 162(4):1019-1034.

[26]Zhou H, Liu ZH, Cheng M, et al., 2015. Influence of coke combustion on NOx emission during iron ore sintering. Energy & Fuels, 29(2):974-984.

[27]Zhou H, Cheng M, Zhou MX, et al., 2016. Influence of sintering parameters of different sintering layers on NOx emission in iron ore sintering process. Applied Thermal Engineering, 94:786-798.

[28]Zhou H, Li Y, Tang Q, et al., 2017. Combining flame monitoring techniques and support vector machine for the online identification of coal blends. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(9):677-689.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE