Full Text:   <2164>

Summary:  <1834>

CLC number: TH136

On-line Access: 2021-04-12

Received: 2020-12-06

Revision Accepted: 2021-01-27

Crosschecked: 2021-03-18

Cited: 0

Clicked: 4062

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jin-yuan Qian

https://orcid.org/0000-0002-5438-0833

Zhi-jiang Jin

https://orcid.org/0000-0002-8063-709X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2021 Vol.22 No.4 P.265-276

http://doi.org/10.1631/jzus.A2000582


A parametric study on unbalanced moment of piston type valve core


Author(s):  Jin-yuan Qian, Juan Mu, Cong-wei Hou, Zhi-jiang Jin

Affiliation(s):  Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   jzj@zju.edu.cn

Key Words:  Piston type valve core, Unbalanced moment, Geometrical parameters, Computational fluid dynamics (CFD)


Jin-yuan Qian, Juan Mu, Cong-wei Hou, Zhi-jiang Jin. A parametric study on unbalanced moment of piston type valve core[J]. Journal of Zhejiang University Science A, 2021, 22(4): 265-276.

@article{title="A parametric study on unbalanced moment of piston type valve core",
author="Jin-yuan Qian, Juan Mu, Cong-wei Hou, Zhi-jiang Jin",
journal="Journal of Zhejiang University Science A",
volume="22",
number="4",
pages="265-276",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2000582"
}

%0 Journal Article
%T A parametric study on unbalanced moment of piston type valve core
%A Jin-yuan Qian
%A Juan Mu
%A Cong-wei Hou
%A Zhi-jiang Jin
%J Journal of Zhejiang University SCIENCE A
%V 22
%N 4
%P 265-276
%@ 1673-565X
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2000582

TY - JOUR
T1 - A parametric study on unbalanced moment of piston type valve core
A1 - Jin-yuan Qian
A1 - Juan Mu
A1 - Cong-wei Hou
A1 - Zhi-jiang Jin
J0 - Journal of Zhejiang University Science A
VL - 22
IS - 4
SP - 265
EP - 276
%@ 1673-565X
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2000582


Abstract: 
In this paper, the piston type valve core and the unbalanced moment on its bottom are studied. To decrease the influence of non-common geometrical factors, a simplified model of the piston type globe valve is proposed in this study. Based on the computational fluid dynamics (CFD) method, the effects of different geometrical parameters on the unbalanced moment existing on the bottom of the valve core, which include the bending radius of the inlet flow channel, the diameter of the special-shaped pipe, and the height of the valve core, are studied. Finally, the effects of geometrical parameters on the unbalanced moment on the bottom of the valve core are clarified by correction and variation classification and provide a basis for further optimizing the structure of the piston type valve. The results show that the unbalanced moment decreases with the increase of the bending radius of the inlet flow channel, but increases with the increase of the diameter of the special-shaped pipe and the height of the valve core. Moreover, the relation between the unbalanced moment and flow rate is proposed.

活塞式阀芯不平衡力矩的参数化分析

目的:活塞式阀芯底面受到的不平衡力矩,不仅会让阀芯有倾覆的趋势,甚至会造成阀杆和阀芯变形卡滞,最终导致阀门内漏.本文提出了活塞式截止阀的简化模型,基于计算流体力学方法,探究了入口流道弯曲半径、异形管直径和阀芯高度等特征结构参数对阀芯底面不平衡力矩的影响机制,为活塞式阀门结构的进一步优化提供了依据.
创新点:1. 建立了活塞式截止阀的简化模型,研究简化模型特征结构参数对活塞式阀芯底面不平衡力矩的影响;2. 对简化活塞式截止阀在不同入口流道弯曲半径、异形管直径和阀芯高度下进行流动及阀芯受力分析.
方法:1. 建立具有不同入口流道弯曲半径的简化活塞式截止阀的数值计算模型,并比较分析入口流道弯曲半径对阀内速度以及阀芯受力情况的影响(图7~9);2. 建立具有不同异形管直径的简化活塞式截止阀的数值计算模型,并比较分析异形管直径对阀内压力以及阀芯受力情况的影响(图10~12);3. 建立具有不同阀芯高度的简化活塞式截止阀的数值计算模型,并比较分析阀芯高度对阀芯受力情况的影响(图13),总结得出阀芯受到的合力矩与阀门流量之间的关系(图14).
结论:1. 随着入口流道弯曲半径的增大,阀芯底面受到的不平衡力矩逐渐减小;在实际应用中,可以通过适当增大阀门入口流道弯曲半径来减小不平衡力矩.2. 随着异形管直径的增大,阀芯底部的不平衡力矩略有增大;在阀门的设计中,可以忽略异型管直径对不平衡力矩的影响.3. 阀芯高度增大,出口流量随之增大,加剧了阀芯底面力矩分布不平衡的现象.

关键词:活塞式阀芯;不平衡力矩;结构参数;计算流体力学

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Amirante R, Catalano LA, Poloni C, et al., 2014. Fluid-dynamic design optimization of hydraulic proportional directional valves. Engineering Optimization, 46(10):1295-1314.

[2]Amirante R, Distaso E, Tamburrano P, 2016. Sliding spool design for reducing the actuation forces in direct operated proportional directional valves: experimental validation. Energy Conversion and Management, 119:399-410.

[3]Frosina E, Senatore A, Buono D, et al., 2016. A mathematical model to analyze the torque caused by fluid–solid interaction on a hydraulic valve. Journal of Fluids Engineering, 138(6):061103.

[4]Frosina E, Senatore A, Buono D, et al., 2017. A modeling approach to study the fluid-dynamic forces acting on the spool of a flow control valve. Journal of Fluids Engineering, 139(1):011103.

[5]Han MX, Liu YS, Wu DF, et al., 2017. A numerical investigation in characteristics of flow force under cavitation state inside the water hydraulic poppet valves. International Journal of Heat and Mass Transfer, 111:1-16.

[6]Han MX, Liu YS, Wu DF, et al., 2018. Numerical analysis and optimisation of the flow forces in a water hydraulic proportional cartridge valve for injection system. IEEE Access, 6:10392-10401.

[7]Hou CW, Mu J, Li WQ, et al., 2019. Transient simulation on unbalanced torque of piston type valve cores during dynamic motion. Proceedings of the ASME-JSME-KSME 8th Joint Fluids Engineering Conference, No. V03AT03A018.

[8]Jin ZJ, Qiu C, Jiang CH, et al., 2020. Effect of valve core shapes on cavitation flow through a sleeve regulating valve. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(1):1-14.

[9]Kourakos V, Rambaud P, Buchlin JM, et al., 2013. Flowforce in a safety relief valve under incompressible, compressible, and two-phase flow conditions (PVP-2011-57896). Journal of Pressure Vessel Technology, 135(1):011305.

[10]Lin Z, Wang HJ, Shang ZH, et al., 2015. Effect of cone angle on the hydraulic characteristics of globe control valve. Chinese Journal of Mechanical Engineering, 28(3):641-648.

[11]Lisowski E, Filo G, Rajda J, 2018. Analysis of flow forces in the initial phase of throttle gap opening in a proportional control valve. Flow Measurement and Instrumentation, 59:157-167.

[12]Manring ND, Zhang SS, 2012. Pressure transient flow forces for hydraulic spool valves. Journal of Dynamic Systems, Measurement, and Control, 134(3):034501.

[13]Nguyen QK, Jung KH, Lee GN, et al., 2020. Experimental study on pressure distribution and flow coefficient of globe valve. Processes, 8(7):875.

[14]Qian JY, Liu BZ, Lei LN, et al., 2016a. Effects of orifice on pressure difference in pilot-control globe valve by experimental and numerical methods. International Journal of Hydrogen Energy, 41(41):18562-18570.

[15]Qian JY, Liu BZ, Jin ZJ, et al., 2016b. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(1):54-64.

[16]Simic M, Herakovic N, 2015. Reduction of the flow forces in a small hydraulic seat valve as alternative approach to improve the valve characteristics. Energy Conversion and Management, 89:708-718.

[17]Wang H, Quan L, Huang JH, et al., 2019. Reduction of steady flow torques in a single-stage rotary servo valve. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 233(4):718-727.

[18]Wang HH, Xu H, Zhang YH, et al., 2019. Design of a bio-inspired anti-erosion structure for a water hydraulic valve core: an experimental study. Biomimetics, 4(3):63.

[19]Wang YP, Zhu CN, Zhang G, et al., 2020. Numerical analysis to the effect of guiding plate on flow characteristics in a ball valve. Processes, 8(1):69.

[20]Zhang JH, Wang D, Xu B, et al., 2018. Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(6):417-430.

[21]Zhao JH, Zhou SL, Lu XH, et al., 2015. Numerical simulation and experimental study of heat-fluid-solid coupling of double flapper-nozzle servo valve. Chinese Journal of Mechanical Engineering, 28(5):1030-1038.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE