CLC number:
On-line Access: 2023-04-25
Received: 2022-06-01
Revision Accepted: 2022-09-23
Crosschecked: 2023-04-25
Cited: 0
Clicked: 1016
Citations: Bibtex RefMan EndNote GB/T7714
Jingfeng LI, Kai WANG, Chenjie GU, Limin QIU. Exhaust process of cryogenic nitrogen gas from a cryogenic wind tunnel with an inclined exit[J]. Journal of Zhejiang University Science A, 2023, 24(5): 419-431.
@article{title="Exhaust process of cryogenic nitrogen gas from a cryogenic wind tunnel with an inclined exit",
author="Jingfeng LI, Kai WANG, Chenjie GU, Limin QIU",
journal="Journal of Zhejiang University Science A",
volume="24",
number="5",
pages="419-431",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200289"
}
%0 Journal Article
%T Exhaust process of cryogenic nitrogen gas from a cryogenic wind tunnel with an inclined exit
%A Jingfeng LI
%A Kai WANG
%A Chenjie GU
%A Limin QIU
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 5
%P 419-431
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200289
TY - JOUR
T1 - Exhaust process of cryogenic nitrogen gas from a cryogenic wind tunnel with an inclined exit
A1 - Jingfeng LI
A1 - Kai WANG
A1 - Chenjie GU
A1 - Limin QIU
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 5
SP - 419
EP - 431
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200289
Abstract: A new structural design for the vent stack with an inclined exit was proposed to reduce the settlement hazard of the cryogenic plume from a cryogenic wind tunnel; it extends the plume trajectory to increase the effective contact space and time for mixing between the plume gas and atmospheric air before the plume settles to the ground, contributing to more efficient energy consumption for heating. Reduced-scale experiments and numerical simulations of plume dispersion based on vertical and 30°- and 45°-inclined exits were conducted to study harm reduction and energy-saving potential. Analyses of the minimum temperature and minimum oxygen concentration of the plume near the ground indicate that the new exhaust design with an inclined exit clearly reduces the settlement hazard. Under windless conditions and without using a fan-ejector system, up to 15.9% of the heating energy used by the burner can be saved by adopting the new design.
[1]ANSYS, 2011. ANSYS Fluent UDF Manual 14.0. ANSYS Inc., Canonsburg, USA.
[2]BruceWE, FullerDE, IgoeWB, 1984. National transonic facility shakedown test results and calibration plans. The 13th Aerodynamic Testing Conference.
[3]ChanST, RodeanHC, ErmakDL, 1984. Numerical simulations of atmospheric releases of heavy gases over variable terrain. In: de Wispelaere C (Ed.), Air Pollution Modeling and Its Application III. Springer, New York, USA, p.295-328.
[4]ErmakDL, ChapmanR, GoldwireHC, et al., 1989. Heavy Gas Dispersion Test Summary Report. Technical Report No. ESL-TR-88-22, Lawrence Livermore National Lab, Livermore, CA, USA.
[5]GoodyerMJ, KilgoreRA, 1972. The high Reynolds number cryogenic wind tunnel. The 7th Aerodynamic Testing Conference.
[6]GreenJ, QuestJ, 2011. A short history of the European transonic wind tunnel ETW. Progress in Aerospace Sciences, 47(5):319-368. https://doi:10.1016/j.paerosci.2011.06.002
[7]IveyGW, 1979. Cryogenic gaseous nitrogen discharge system. NASA Conference on Cryogenic Technology, p.271-278.
[8]KilgoreRA, 1976. Design Features and Operational Characteristics of the Langley 0.3-Meter Transonic Cryogenic Tunnel. Technical Report No. NASA-TN-D-8304, NASA Langley Research Center, Hampton, VA, USA.
[9]KilgoreRA, 1994. Cryogenic wind tunnels‒a brief review. In: Kittel P (Ed.), Advances in Cryogenic Engineering. Springer, New York, USA, p.63-70.
[10]KilgoreRA, 2005. Evolution and development of cryogenic wind tunnels. The 43rd AIAA Aerospace Sciences Meeting and Exhibit.
[11]KilgoreRA, DressDA, 1984. The application of cryogenics to high Reynolds number testing in wind tunnels. Part 1: evolution, theory, and advantages. Cryogenics, 24(8):395-402.
[12]KilgoreRA, GoodyerMJ, AdcockJB, et al., 1974. The Cryogenic Wind Tunnel Concept for High Reynolds Number Testing. Technical Report No. NASA TN D-7762, NASA Langley Research Center, Hampton, VA, USA.
[13]KuhlmanJM, PrahlJM, 1975. Observations of the Kelvin-Helmholtz instability in laboratory models and field examples of thermal plumes. Journal of Great Lakes Research, 1(1):101-115.
[14]LassiterWS, 1987. Plume Dispersion of the Exhaust from a Cryogenic Wind Tunnel. Technical Report No. NASA-TM-89148, NASA Langley Research Center, Hampton, VA, USA.
[15]LiJF, WangK, ZhangXB, et al., 2018. A parametric sensitivity study by numerical simulations on plume dispersion of the exhaust from a cryogenic wind tunnel. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(10):746-757.
[16]Luketa-HanlinA, KoopmanRP, ErmakDL, 2007. On the application of computational fluid dynamics codes for liquefied natural gas dispersion. Journal of Hazardous Materials, 140(3):504-517.
[17]McbrideMA, ReevesAB, VanderheydenMD, et al., 2001. Use of advanced techniques to model the dispersion of chlorine in complex terrain. Process Safety and Environmental Protection, 79(2):89-102.
[18]NIST (National Institute of Standards and Technology), 2007. Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). NIST, Gaithersburg, USA.
[19]SaïdNM, MhiriH, le PalecG, et al., 2005. Experimental and numerical analysis of pollutant dispersion from a chimney. Atmospheric Environment, 39(9):1727-1738.
[20]SmeltMAR, 1991. Power economy in high-speed wind tunnels by choice of working fluid and temperature. In: Donnelly RJ (Ed.), High Reynolds Number Flows Using Liquid and Gaseous Helium. Springer, New York, USA, p.265-284.
[21]XingJ, LiuZY, HuangP, et al., 2014. CFD validation of scaling rules for reduced-scale field releases of carbon dioxide. Applied Energy, 115:525-530.
[22]ZhangXB, LiJF, ZhuJK, et al., 2015. Computational fluid dynamics study on liquefied natural gas dispersion with phase change of water. International Journal of Heat and Mass Transfer, 91:347-354.
Open peer comments: Debate/Discuss/Question/Opinion
<1>