Full Text:   <763>

Summary:  <284>

CLC number: 

On-line Access: 2023-04-25

Received: 2022-06-01

Revision Accepted: 2022-09-23

Crosschecked: 2023-04-25

Cited: 0

Clicked: 1016

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jing-feng Li

https://orcid.org/0000-0002-5780-3192

Li-min Qiu

https://orcid.org/0000-0003-1943-8902

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.5 P.419-431

http://doi.org/10.1631/jzus.A2200289


Exhaust process of cryogenic nitrogen gas from a cryogenic wind tunnel with an inclined exit


Author(s):  Jingfeng LI, Kai WANG, Chenjie GU, Limin QIU

Affiliation(s):  Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   Limin.Qiu@zju.edu.cn

Key Words:  Cryogenic gas dispersion, Cryogenic wind tunnel, Exhaust method, Hazard reduction, Inclined exit


Jingfeng LI, Kai WANG, Chenjie GU, Limin QIU. Exhaust process of cryogenic nitrogen gas from a cryogenic wind tunnel with an inclined exit[J]. Journal of Zhejiang University Science A, 2023, 24(5): 419-431.

@article{title="Exhaust process of cryogenic nitrogen gas from a cryogenic wind tunnel with an inclined exit",
author="Jingfeng LI, Kai WANG, Chenjie GU, Limin QIU",
journal="Journal of Zhejiang University Science A",
volume="24",
number="5",
pages="419-431",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200289"
}

%0 Journal Article
%T Exhaust process of cryogenic nitrogen gas from a cryogenic wind tunnel with an inclined exit
%A Jingfeng LI
%A Kai WANG
%A Chenjie GU
%A Limin QIU
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 5
%P 419-431
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200289

TY - JOUR
T1 - Exhaust process of cryogenic nitrogen gas from a cryogenic wind tunnel with an inclined exit
A1 - Jingfeng LI
A1 - Kai WANG
A1 - Chenjie GU
A1 - Limin QIU
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 5
SP - 419
EP - 431
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200289


Abstract: 
A new structural design for the vent stack with an inclined exit was proposed to reduce the settlement hazard of the cryogenic plume from a cryogenic wind tunnel; it extends the plume trajectory to increase the effective contact space and time for mixing between the plume gas and atmospheric air before the plume settles to the ground, contributing to more efficient energy consumption for heating. Reduced-scale experiments and numerical simulations of plume dispersion based on vertical and 30°- and 45°-inclined exits were conducted to study harm reduction and energy-saving potential. Analyses of the minimum temperature and minimum oxygen concentration of the plume near the ground indicate that the new exhaust design with an inclined exit clearly reduces the settlement hazard. Under windless conditions and without using a fan-ejector system, up to 15.9% of the heating energy used by the burner can be saved by adopting the new design.

低温风洞倾斜出口排气过程分析

作者:厉劲风1,2,王凯1,顾陈杰1,邱利民1
机构:1浙江大学,制冷与低温研究所,中国杭州,310027;2白马湖实验室,中国杭州,310051
目的:在使用引射器的基础上,低温风洞排气系统利用风机和加热器可进一步降低排气羽流的沉降危害,但也带来了高能耗。本文旨在探讨排气出口倾斜角度对低温风洞低温氮气排气过程的影响,并验证采用倾斜排气出口结构对降低低温风洞排气系统能耗的可行性。
创新点:1.提出低温风洞倾斜出口排气方式;2.建立低温风洞排气塔缩比模型,并开展倾斜出口排气过程的实验分析。
方法:1.根据相似性准则,建立低温风洞排气塔缩比模型,并通过实验对比倾斜出口排气过程和传统垂直出口排气过程,验证倾斜出口排气方式是否可降低羽流沉降危害;2.通过实验与模拟对比,验证低温羽流扩散数值模型的准确性;3.通过仿真模拟,进一步量化研究倾斜出口排气方式的节能潜力。
结论:1.相比传统垂直排气方式,30°或45°倾斜出口的排气方式可有效降低低温羽流的沉降危害;2.以0.3 m低温风洞极端排气工况为例,采用30°或45°倾斜出口,在无风条件下可节省15.9%的加热能耗;3.采用倾斜出口排气方式可以提高排气系统的安全下限。

关键词:低温气体扩散;低温风洞;排气方式;危害降低;倾斜出口

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ANSYS, 2011. ANSYS Fluent UDF Manual 14.0. ANSYS Inc., Canonsburg, USA.

[2]BruceWE, FullerDE, IgoeWB, 1984. National transonic facility shakedown test results and calibration plans. The 13th Aerodynamic Testing Conference.

[3]ChanST, RodeanHC, ErmakDL, 1984. Numerical simulations of atmospheric releases of heavy gases over variable terrain. In: de Wispelaere C (Ed.), Air Pollution Modeling and Its Application III. Springer, New York, USA, p.295-328.

[4]ErmakDL, ChapmanR, GoldwireHC, et al., 1989. Heavy Gas Dispersion Test Summary Report. Technical Report No. ESL-TR-88-22, Lawrence Livermore National Lab, Livermore, CA, USA.

[5]GoodyerMJ, KilgoreRA, 1972. The high Reynolds number cryogenic wind tunnel. The 7th Aerodynamic Testing Conference.

[6]GreenJ, QuestJ, 2011. A short history of the European transonic wind tunnel ETW. Progress in Aerospace Sciences, 47(5):319-368. https://doi:10.1016/j.paerosci.2011.06.002

[7]IveyGW, 1979. Cryogenic gaseous nitrogen discharge system. NASA Conference on Cryogenic Technology, p.271-278.

[8]KilgoreRA, 1976. Design Features and Operational Characteristics of the Langley 0.3-Meter Transonic Cryogenic Tunnel. Technical Report No. NASA-TN-D-8304, NASA Langley Research Center, Hampton, VA, USA.

[9]KilgoreRA, 1994. Cryogenic wind tunnels‒a brief review. In: Kittel P (Ed.), Advances in Cryogenic Engineering. Springer, New York, USA, p.63-70.

[10]KilgoreRA, 2005. Evolution and development of cryogenic wind tunnels. The 43rd AIAA Aerospace Sciences Meeting and Exhibit.

[11]KilgoreRA, DressDA, 1984. The application of cryogenics to high Reynolds number testing in wind tunnels. Part 1: evolution, theory, and advantages. Cryogenics, 24(8):‍395-402.

[12]KilgoreRA, GoodyerMJ, AdcockJB, et al., 1974. The Cryogenic Wind Tunnel Concept for High Reynolds Number Testing. Technical Report No. NASA TN D-7762, NASA Langley Research Center, Hampton, VA, USA.

[13]KuhlmanJM, PrahlJM, 1975. Observations of the Kelvin-Helmholtz instability in laboratory models and field examples of thermal plumes. Journal of Great Lakes Research, 1(1):101-115.

[14]LassiterWS, 1987. Plume Dispersion of the Exhaust from a Cryogenic Wind Tunnel. Technical Report No. NASA-TM-89148, NASA Langley Research Center, Hampton, VA, USA.

[15]LiJF, WangK, ZhangXB, et al., 2018. A parametric sensitivity study by numerical simulations on plume dispersion of the exhaust from a cryogenic wind tunnel. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(10):746-757.

[16]Luketa-HanlinA, KoopmanRP, ErmakDL, 2007. On the application of computational fluid dynamics codes for liquefied natural gas dispersion. Journal of Hazardous Materials, 140(3):504-517.

[17]McbrideMA, ReevesAB, VanderheydenMD, et al., 2001. Use of advanced techniques to model the dispersion of chlorine in complex terrain. Process Safety and Environmental Protection, 79(2):89-102.

[18]NIST (National Institute of Standards and Technology), 2007. Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). NIST, Gaithersburg, USA.

[19]SaïdNM, MhiriH, le PalecG, et al., 2005. Experimental and numerical analysis of pollutant dispersion from a chimney. Atmospheric Environment, 39(9):1727-1738.

[20]SmeltMAR, 1991. Power economy in high-speed wind tunnels by choice of working fluid and temperature. In: Donnelly RJ (Ed.), High Reynolds Number Flows Using Liquid and Gaseous Helium. Springer, New York, USA, p.265-284.

[21]XingJ, LiuZY, HuangP, et al., 2014. CFD validation of scaling rules for reduced-scale field releases of carbon dioxide. Applied Energy, 115:525-530.

[22]ZhangXB, LiJF, ZhuJK, et al., 2015. Computational fluid dynamics study on liquefied natural gas dispersion with phase change of water. International Journal of Heat and Mass Transfer, 91:347-354.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE