Full Text:   <507>

Summary:  <243>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-11-13

Received: 2022-10-16

Revision Accepted: 2023-02-28

Crosschecked: 2023-11-14

Cited: 0

Clicked: 858

Citations:  Bibtex RefMan EndNote GB/T7714


Shizhen LI


Yugang REN


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.11 P.937-948


Core-drilling kinematic modeling and analysis of Jiaolong submersible manipulator

Author(s):  Xu YANG, Xin LIU, Shizhen LI, Yugang REN, Limin ZHU

Affiliation(s):  Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; more

Corresponding email(s):   kmlishizhen@126.com, ryg@ndsc.org.cn

Key Words:  Kinematic model, Core drilling, Jiaolong submersible manipulator, Uncertain posture

Share this article to: More |Next Article >>>

Xu YANG, Xin LIU, Shizhen LI, Yugang REN, Limin ZHU. Core-drilling kinematic modeling and analysis of Jiaolong submersible manipulator[J]. Journal of Zhejiang University Science A, 2023, 24(11): 937-948.

@article{title="Core-drilling kinematic modeling and analysis of Jiaolong submersible manipulator",
author="Xu YANG, Xin LIU, Shizhen LI, Yugang REN, Limin ZHU",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Core-drilling kinematic modeling and analysis of Jiaolong submersible manipulator
%A Xin LIU
%A Shizhen LI
%A Yugang REN
%A Limin ZHU
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 11
%P 937-948
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200484

T1 - Core-drilling kinematic modeling and analysis of Jiaolong submersible manipulator
A1 - Xu YANG
A1 - Xin LIU
A1 - Shizhen LI
A1 - Yugang REN
A1 - Limin ZHU
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 11
SP - 937
EP - 948
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200484

The complicated topographies of the deep sea pose significant challenges for the core drilling with the jiaolong submersible manipulator. To address this problem, we proposed a core-drilling kinematic model and evaluated the core-drilling behavior of the submersible manipulator by comprehensively considering the uncertain posture of the Jiaolong submersible. First, we established a forward kinematic model for the core-drilling task in deep sea, which satisfied the requirement of gravitational-direction core drilling. Based on the forward kinematic equations, we then built a double-redundancy inverse kinematic model, which was able to determine the required motion trajectories of six active joints according to the desired core-drilling trajectory. The core-drilling workspaces and the motions of the jiaolong submersible manipulator were assessed with several calculation examples. The established forward and inverse kinematic models are constructed with clear analytic equations, and thus are directly applicable to the jiaolong submersible manipulator-based core-drilling task.


结论:1.可以通过调节蛟龙号载人深潜器机械臂第六个主动关节,实现岩芯钻机作业姿态的稳定保持;2.基于蛟龙号载人深潜器机械臂的岩芯取样作业,可通过预设第二和第三主动关节轨迹并同时主动调节第一、第四、第五和第六主动关节轨迹来实现;3.蛟龙号载人深潜器水平坐地时,其岩芯取样作业空间类似椭球体:X方向的范围为-300.5~1847.0 mm,Y方向的范围为-1656.6~1656.6 mm,Z方向的范围为-2023.7~1133.9 mm。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]ChenP, LongJC, YangW, et al., 2021. Inverse kinematics solution of underwater manipulator based on Jacobi matrix. OCEANS 2021: San Diego–Porto, p.1-4.

[2]ChuFY, QianXY, ZhangHS, et al., 2005. Discovery of ferromanganese crust boundary and its genetic and ore prospecting significance. Journal of Zhejiang University SCIENCE, 6(7):656-662.

[3]CuiWC, 2013. Development of the Jiaolong deep manned submersible. Marine Technology Society Journal, 47(3):37-54.

[4]DereliS, KökerR, 2020. A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: quantum behaved particle swarm algorithm. Artificial Intelligence Review, 53(2):949-964.

[5]IizasaK, FiskeRS, IshizukaO, et al., 1999. A Kuroko-type polymetallic sulfide deposit in a submarine silicic caldera. Science, 283(5404):975-977.

[6]KhanA, QuanWL, 2015. Forward kinematic modeling and analysis of 6-DOF underwater manipulator. International Conference on Fluid Power and Mechatronics, p.‍1093-1096.

[7]KhlystovO, de BatistM, ShojiH, et al., 2013. Gas hydrate of Lake Baikal: discovery and varieties. Journal of Asian Earth Sciences, 62:162-166.

[8]KohnenW, 2013. Review of deep ocean manned submersible activity in 2013. Marine Technology Society Journal, 47(5):56-68.

[9]KohnenW, 2018. MTS manned underwater vehicles 2017-2018 global industry overview. Marine Technology Society Journal, 52(5):125-151.

[10]LauroFM, McDougaldD, ThomasT, et al., 2009. The genomic basis of trophic strategy in marine bacteria. Proceedings of the National Academy of Sciences of the United States of America, 106(37):15527-15533.

[11]LiGF, XiaoF, ZhangXF, et al., 2022. An inverse kinematics method for robots after geometric parameters compensation. Mechanism and Machine Theory, 174:104903.

[12]LiLY, LiX, ZhouX, et al., 2007. Study of off-line programming system of arc robot based on the software of ROBOGUIDE. In: Tarn TJ, Chen SB, Zhou CJ (Eds.), Robotic Welding, Intelligence and Automation. Springer, Berlin, Germany, p.401-408.

[13]LiuF, CuiWC, LiXY, 2010. China’s first deep manned submersible, JIAOLONG. Science China Earth Sciences, 53(10):1407-1410.

[14]LuoS, ChuDM, LiQD, et al., 2022. Inverse kinematics solution of 6-DOF manipulator based on multi-objective full-parameter optimization PSO algorithm. Frontiers in Neurorobotics, 16:791796.

[15]QiaoSG, LiaoQZ, WeiSM, et al., 2010. Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions. Mechanism and Machine Theory, 45(2):193-199.

[16]RavillyM, HorenH, PerrinM, et al., 2001. NRM intensity of altered oceanic basalts across the MAR (21°N, 0‒1.5 Ma): a record of geomagnetic palaeointensity variations? Geophysical Journal International, 145(2):401-422.

[17]ReaganMK, PearceJA, PetronotisK, et al., 2017. Subduction initiation and ophiolite crust: new insights from IODP drilling. International Geology Review, 59(11):1439-1450.

[18]RenYG, YangL, LiuYJ, et al., 2021. Experimental research on the process parameters of a novel low-load drill bit used for 7000 m bedrock sampling base on manned submersible. Journal of Marine Science and Engineering, 9(6):682.

[19]RohHS, KimJO, 2004. Manipulator modeling from D-H parameters. The 30th Annual Conference of IEEE Industrial Electronics Society, p.2480-2485.

[20]SivčevS, ColemanJ, OmerdićE, et al., 2018. Underwater manipulators: a review. Ocean Engineering, 163:431-450.

[21]StakesD, MooreWS, TengdinT, et al., 1992. Cores drilled into active smokers on Juan de Fuca Ridge. Eos, Transactions American Geophysical Union, 73(26):273-283.

[22]TsuchiyaM, NomakiH, KitahashiT, et al., 2019. Sediment sampling with a core sampler equipped with aluminum tubes and an onboard processing protocol to avoid plastic contamination. MethodsX, 6:2662-2668.

[23]WangD, WuJ, WangLP, 2018. Research on the error transfer characteristics of a 3-DOF parallel tool head. Robotics and Computer-Integrated Manufacturing, 50:266-275.

[24]WangWZ, ZhangSS, YeC, et al., 2020. A new method for optimizing the cabin layout of manned submersibles. Complexity, 2020:6626602.

[25]WuSJ, YangCJ, HuangHC, et al., 2014. Development of an electric control gas-tight sampler for seafloor hydrothermal fluids. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(2):120-129.

[26]XiaoF, LiGF, JiangD, et al., 2021. An effective and unified method to derive the inverse kinematics formulas of general six-DOF manipulator with simple geometry. Mechanism and Machine Theory, 159:104265.

[27]YaoHQ, LiuYG, YangY, et al., 2021. Assessment of acoustic backscatter intensity surveying on deep-sea ferromanganese crust: constraints from Weijia Guyot, western Pacific Ocean. China Geology, 4(2):288-298.

[28]ZhangJ, LiW, YuJC, et al., 2017. Study of manipulator operations maneuvered by a ROV in virtual environments. Ocean Engineering, 142:292-302.

[29]ZhangTW, DingZJ, ZhaoSY, et al., 2016. Positioning sonars of Jiaolong human occupied vehicle: basic principle and sea trial. OCEANS 2016–Shanghai, p.1-4.

[30]ZhangTW, TangJL, LiZG, et al., 2018. Use of the Jiaolong manned submersible for accurate mapping of deep-sea topography and geomorphology. Science China Earth Sciences, 61(8):1148-1156.

[31]ZhangY, LiXH, YuTT, et al., 2022. Trajectory planning of deep-sea hydraulic manipulator in joint space with flow constraints. International Symposium on Control Engineering and Robotics, p.31-37.

[32]ZhuM, 2020. Acoustic system of Jiaolong manned submersible and its future development. In:Chinese Academy of Sciences, Cyberspace Administration of China, Ministry of Education of the PRC, et al. (Eds.), China’s e-Science Blue Book 2018. Springer, Singapore, p.171-186.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE