CLC number: R599
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 23
Clicked: 6025
Si-yuan LI, Jun-ling CAO, Zhong-li SHI, Jing-hong CHEN, Zeng-tie ZHANG, Clare E. HUGHES, Bruce CATERSON. Promotion of the articular cartilage proteoglycan degradation by T-2 toxin and selenium protective effect[J]. Journal of Zhejiang University Science B, 2008, 9(1): 22-33.
@article{title="Promotion of the articular cartilage proteoglycan degradation by T-2 toxin and selenium protective effect",
author="Si-yuan LI, Jun-ling CAO, Zhong-li SHI, Jing-hong CHEN, Zeng-tie ZHANG, Clare E. HUGHES, Bruce CATERSON",
journal="Journal of Zhejiang University Science B",
volume="9",
number="1",
pages="22-33",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B071322"
}
%0 Journal Article
%T Promotion of the articular cartilage proteoglycan degradation by T-2 toxin and selenium protective effect
%A Si-yuan LI
%A Jun-ling CAO
%A Zhong-li SHI
%A Jing-hong CHEN
%A Zeng-tie ZHANG
%A Clare E. HUGHES
%A Bruce CATERSON
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 1
%P 22-33
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B071322
TY - JOUR
T1 - Promotion of the articular cartilage proteoglycan degradation by T-2 toxin and selenium protective effect
A1 - Si-yuan LI
A1 - Jun-ling CAO
A1 - Zhong-li SHI
A1 - Jing-hong CHEN
A1 - Zeng-tie ZHANG
A1 - Clare E. HUGHES
A1 - Bruce CATERSON
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 1
SP - 22
EP - 33
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B071322
Abstract: Objective: To identify the relationship between t-2 toxin and kashin-Beck disease (KBD), the effects of t-2 toxin on aggrecan metabolism in human chondrocytes and cartilage were investigated in vitro. Methods: Chondrocytes were isolated from human articular cartilage and cultured in vitro. hyaluronic acid (HA), soluble CD44 (sCD44), IL-1β and TNF-α levels in supernatants were measured by enzyme-linked immunosorbent assay (ELISA). CD44 content in chondrocyte membrane was determined by flow cytometry (FCM). CD44, hyaluronic acid synthetase-2 (HAS-2) and aggrecanases mRNA levels in chondrocytes were determined using reverse transcription polymerase chain reaction (RT-PCR). Immunocytochemical method was used to investigate expressions of BC-13, 3-B-3(−) and 2-B-6 epitopes in the cartilage reconstructed in vitro. Results: t-2 toxin inhibited CD44, HAS-2, and aggrecan mRNA expressions, but promoted aggrecanase-2 mRNA expression. Meanwhile, CD44 expression was found to be the lowest in the chondrocytes cultured with t-2 toxin and the highest in control plus selenium group. In addition, ELISA results indicated that there were higher sCD44, IL-1β and TNF-α levels in t-2 toxin group. Similarly, higher HA levels were also observed in t-2 toxin group using radioimmunoprecipitation assay (RIPA). Furthermore, using monoclonal antibodies BC-13, 3-B-3 and 2-B-6, strong positive immunostaining was found in the reconstructed cartilage cultured with t-2 toxin, whereas no positive staining or very weak staining was observed in the cartilage cultured without t-2 toxin. Selenium could partly inhibit the effects of t-2 toxin above. Conclusion: t-2 toxin could inhibit aggrecan synthesis, promote aggrecanases and pro-inflammatory cytokines production, and consequently induce aggrecan degradation in chondrocytes. These will perturb metabolism balance between aggrecan synthesis and degradation in cartilage, inducing aggrecan loss in the end, which may be the initiation of the cartilage degradation.
[1] Arner, E.C., Hughes, C.E., Decicco, C.P., Caterson, B., Tortorella, M.D., 1998. Cytokine-induced cartilage proteoglycan degradation is mediated by aggrecanase. Osteoarthritis Cartilage, 6(3):214-228.
[2] Cao, J.L., Xiong, Y.M., Li, S.C., Zheng, B., Zhang, S.Y., Bi, H.Y., Mo, D.X., 1998. The experimental study on the effects of six mycotoxins on the cultural chondrocytes. J. Xi’an Med. Univ. (English), 10(1):1-8.
[3] Chen, J.H., Cao, J.L., Chu, Y.L., Yang, Z.T., Shi, Z.L., Wang, H.L., Guo, X., Wang, Z.L., 2006a. Protective effect of selenium against T-2 toxin-induced inhibition of chondrocyte aggrecan and collagen II synthesis. J. Southern Med. Univ., 26(4):381-385 (in Chinese).
[4] Chen, J.H., Chu, Y.L., Cao, J.L., Yang, Z.T., Shi, Z.L., Guo, X., Wang, Z.L., 2006b. Effect of NO and Fas pathway on T-2 induced apoptosis in chondrocytes. J. Sichuan Univ. (Med. Sci. Ed.), 37(4):583-586 (in Chinese).
[5] Chen, J.H., Chu, Y.L., Cao, J.L., Yang, Z.T., Guo, X., Wang, Z.L., 2006c. T-2 toxin induces apoptosis, and selenium partly blocks, T-2 toxin induced apoptosis in chondrocytes through modulation of the Bax/Bcl-2 ration. Food Chem. Toxicol., 44(4):567-573.
[6] Chockalingam, P.S., Zeng, W., Morris, E.A., Flannery, C.R., 2004. Release of hyaluronan and hyaladherins (aggrecan G1 domain and link proteins) from articular cartilage exposed to ADAMTS-4 (aggrecanase 1) or ADAMTS-5 (aggrecanase 2). Arthritis Rheum., 50(9):2839-2848.
[7] Fan, Z., Söder, S., Oehler, S., Fundel, K., Aigner, T., 2007. Activation of interleukin-1 signaling cascades in normal and osteoarthritic articular cartilage. Am. J. Pathol., 171(3):938-946.
[8] Flannery, C.R., Little, C.B., Hughes, C.E., Caterson, B., 1999. Expression of ADAMTS homologues in articular cartilage. Biochem. Biophys. Res. Commun., 260(2):318-322.
[9] Fortier, L.A., Schnabel, L.V., Mohammed, H.O., Mayr, K.G., 2007. Assessment of cartilage degradation effects of matrix metalloproteinase-13 in equine cartilage cocultured with synoviocytes. Am. J. Vet. Res., 68(4):379-384.
[10] Caterson, B., Christner, J.E., Baker, J.R., Couchman, J.R., 1985. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans. Federation Proc., 44(2):386-393.
[11] Caterson, B., Mahmoodian, F., Sorrel, J.M., Hardingham, T.E., Bayliss, M.T., Carney, S.L., Ratcliffe, A., Muir, H., 1990. Modulation of native chondroitin sulfate structure in tissue development and in disease. J. Cell Sci., 97(Pt 3):411-417.
[12] Cawston, T.E., Milner, J.M., Catterall, J.B., Rowan, A.D., 2003. Cytokine synergy, collagenases and cartilage collagen breakdown. Biochem. Soc. Symp., 70:125-133.
[13] Gendron, C., Kashiwagi, M., Lim, N.H., Enghild, J.J., Thøgersen, I.B., Hughes, C., Caterson, B., Nagase, H., 2007. Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J. Biol. Chem., 282(25):18294-18306.
[14] Geysen, H.M., Mason, T.J., Rodda, S.J., 1988. Cognitive features of continuous antigenic determinants. J. Mol. Recognit., 1(1):32-41.
[15] Guo, C., Cao, J., Zhang, S., 1997. Effect of serum from children with Kashin-Beck disease on proteoglycan: an abolism of bovine articularcartilage in steady-state culture. Chin. J. Epidem., 16(3):143-144 (in Chinese).
[16] Hardingham, T.E., Fosang, A., 1992. Proteoglycans: many forms and many functions. FASEB J., 6(3):861-870.
[17] Hughes, C.E., Caterson, B., White, R.J., Roughley, P.J., Mort, J.S., 1992. Monoclonal antibodies recognizing protease-generated neoepitopes from cartilage proteoglycan degradation. Application to studies of human link protein cleavage by stromelysin. J. Biol. Chem., 267(23):16011-16014.
[18] Hughes, C.E., Caterson, B., Fosang, A.J., Roughley, P.J., Mort, J.S., 1995. Monoclonal antibodies that specifically recognize neoepitopes sequences generated by “aggrecanases” and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem. J., 305(Pt 3):799-804.
[19] Ishiguro, N., Kojima, T., 2004. Role of aggrecanase and MMP in cartilage degradation. Clin. Calcium, 14(7):38-44.
[20] Ji, X., Ning, K., Liang, D., Shi, G., 1994. Effects of sterigmatocystin and T-2 toxin on the induced of unscheduled DNA synthesis in primary cultures of human gastric epithelial cells. Nat. Toxins, 2(3):115-119.
[21] Liacini, A., Sylvester, J., Zafarullah, M., 2005. Triptolide suppresses proinflammatory cytokine-induced matrix metalloproteinase and aggrecanase-1 gene expression in chondrocytes. Biochem. Biophys. Res. Commun., 327(1):320-327.
[22] Lin, X., Hou, L., Yang, T., 2001. Influence of grains or water from KBD endemic area on glycosaminoglycan metabolism in Rhesus monkey cartilages. Chin. J. Epidem., 20(2):87-89.
[23] Little, C.B., Hughes, C.E., Curtis, C.L., Janusz, M.J., Bohne, R., Wang-Weigand, S., Taiwo, Y.O., Mitchell, P.G., Otterness, I.G., Flannery, C.R., Caterson, B., 2002. Matrix metalloproteinases are involved in C-terminal and interglobular domain processing of cartilage aggrecan in late stage cartilage degradation. Matrix Biol., 21(3):271-288.
[24] Little, C.B., Meeker, C.T., Golub, S.B., Lawlor, K.E., Farmer, P.J., Smith, S.M., Fosang, A.J., 2007. Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J. Clin. Invest., 117(6):1627-1636.
[25] Mo, D., Ding, D., Wang, Z., Zhang, J., Bai, C., 1997. Twenty-year research on selenium related to Kashin-Beck disease. J. Xi’an Med. Univ., 9(1):79-89 (in Chinese).
[26] Pratta, M.A., Scherle, P.A., Yang, G., Liu, R.Q., Newton, R.C., 2003. Induction of aggrecanase 1 (ADAM-TS4) by interleukin-1 occurs through activation of constitutively produced protein. Arthritis Rheum., 48(1):119-133.
[27] Ratcliffe, A., Shurety, W., Caterson, B., 1993. The quantitation of a native chondrotitin sulfate epitope in synovial fluid lavages and articular cartilage from canine experimental osteoarthritis and tissue atrophy. Arthritis Rheum., 36(4):543-551.
[28] Roughley, P.J., 2006. The structure and function of cartilage proteoglycans. Eur. Cell Mater., 30(12):92-101.
[29] Slater, R.R.Jr, Michael, T., Bayliss, M.T., Lachiewicz, P.F., Visco, D.M., Caterson, B., 1995. Monoclonal antibodies that detect biochemical markers of arthritis in humans. Arthritis Rheum., 38(5):655-659.
[30] Song, H.X., Li, F.B., Shen, H.L., Liao, W.M., Liu, M., Wang, M., Cao, J.L., 2006. Repairing articular cartilage defects with tissue-engineering cartilage in rabbits. Chin. J. Traumatol., 9(5):266-271.
[31] Song, R.H., Tortorella, M.D., Malfait, A.M., Alston, J.T., Yang, Z., Arner, E.C., Griggs, D.W., 2007. Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum., 56(2):575-585.
[32] Sun, D., Liu, Y., Li, Q., 1997. Determination of T-2 toxin in staple food from a Kashin-Beck disease (KBD) area and non-KBD areas in Heilongjiang Province. Chin. J. Epidem., 16(4):207-209 (in Chinese).
[33] Tong, W., Yang, T., 2000. IL-1 and TNF bioassay in synovial fluid of patients with Kashin-Beck Disease. Chin. J. Control Endem. Dis., 15(2):71-72 (in Chinese).
[34] Tsuzaki, M., Guyton, G., Garrett, W., Archambault, J.M., Herzog, W., Almekinders, L., Bynum, D., Yang, X., Banes, A.J., 2003. IL-1β induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1β and IL-6 in human tendon cells. J. Orthop. Res., 21(2):256-264.
[35] Wang, Z., 1999. A Historical Overview on Researches and Control of Kashin-Beck Disease in China. International Symposium on Kashin-Beck Disease and Related Disorders. Beijing, China.
[36] Xie, L., Cao, J., Yue, Y., Zhu, J., Zhang, Z., Zhang, F., Li, S., 2003. Study on the effect of T-2 toxin and selenium on CD44 expression in the cultured human fetal chondrocytes in vitro. J. Xi'an Jiaotong Univ. (English), 15(1):78-81.
[37] Xiong, Y., Zhang, S., Luo, Y., Feng, J., Yang, J., 1997. The toxicity study of T-2 toxin causing guinea pig cartilage degradation. Chin. J. Epidem., 12(1):4-6 (in Chinese).
[38] Yang, J., 1998. Mechanisms in occurrence and prevalence of Kashin-Beck disease (KBD). Chin. J. Epidem., 17(4):201-206 (in Chinese).
[39] Yin, P., Guo, X., 1992. Study on the preventive and therapeutic effects of comprehensive method on Kashin-Beck disease for ten years. Endem. Dis. Bull., 7(3):103-107 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>