Full Text:   <3221>

CLC number: Q814

On-line Access: 

Received: 2008-01-16

Revision Accepted: 2008-04-26

Crosschecked: 0000-00-00

Cited: 9

Clicked: 5670

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2008 Vol.9 No.7 P.527-535

http://doi.org/10.1631/jzus.B0820019


Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination


Author(s):  Qiang ZHANG, Qi-he CHEN, Ming-liang FU, Jin-ling WANG, Hong-bo ZHANG, Guo-qing HE

Affiliation(s):  Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310029, China

Corresponding email(s):   chenqh@zju.edu.cn, gqhe@zju.edu.cn

Key Words:  Endo-l, 3-1, 4-&beta, -glucanase (bglS), Gene replacement, Homologous recombination, Bacillus subtilis, PEP4 gene, Saccharomyces cerevisiae


Qiang ZHANG, Qi-he CHEN, Ming-liang FU, Jin-ling WANG, Hong-bo ZHANG, Guo-qing HE. Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination[J]. Journal of Zhejiang University Science B, 2008, 9(7): 527-535.

@article{title="Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination",
author="Qiang ZHANG, Qi-he CHEN, Ming-liang FU, Jin-ling WANG, Hong-bo ZHANG, Guo-qing HE",
journal="Journal of Zhejiang University Science B",
volume="9",
number="7",
pages="527-535",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0820019"
}

%0 Journal Article
%T Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination
%A Qiang ZHANG
%A Qi-he CHEN
%A Ming-liang FU
%A Jin-ling WANG
%A Hong-bo ZHANG
%A Guo-qing HE
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 7
%P 527-535
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820019

TY - JOUR
T1 - Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination
A1 - Qiang ZHANG
A1 - Qi-he CHEN
A1 - Ming-liang FU
A1 - Jin-ling WANG
A1 - Hong-bo ZHANG
A1 - Guo-qing HE
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 7
SP - 527
EP - 535
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820019


Abstract: 
The bglS gene encoding Endo-l,3-1,4-&beta;-glucanase from Bacillus subtilis was cloned and sequenced in this study. The bglS expression cassette, including PGK1 promoter, bglS gene fused to the signal sequence of the yeast mating pheromone α-factor (MFα1S), and ADH1 terminator with G418-resistance as the selected marker, was constructed. Then one of the PEP4 allele of Saccharomyces cerevisiae WZ65 strain was replaced by bglS expression cassette using chromosomal integration of polymerase chain reaction (PCR)-mediated homologous recombination, and the bglS gene was expressed simultaneously. The recombinant strain S. cerevisiae (SC-βG) was preliminarily screened by the clearing hydrolysis zone formed after the barley β-glucan was hydrolyzed in the plate and no proteinase A (PrA) activity was measured in fermenting liquor. The results of PCR analysis of genome DNA showed that one of the PEP4 allele had been replaced and bglS gene had been inserted into the locus of PEP4 gene in recombinant strains. Different Endo-l,3-1,4-&beta;-glucanase assay methods showed that the recombinant strain SC-βG had high Endo-l,3-1,4-&beta;-glucanase expression level with the maximum of 69.3 U/(h·ml) after 60 h of incubation. Meanwhile, the Congo Red method was suitable for the determination of Endo-l,3-1,4-&beta;-glucanase activity during the actual brewing process. The current research implies that the constructed yeast strain could be utilized to improve the industrial brewing property of beer.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Akada, R., 2002. Genetically modified industrial yeast ready for application. J. Biosci. Bioeng., 94(6):536-544.

[2] Ammerer, G., Hunter, C.P., Rothman, J.H., Saari, G.C., Valls, L.A., Stevens, T.H., 1986. PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors. Mol. Cell Biol., 6(7):2490-2499.

[3] Antoni, P., 2000. Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering. Biochimi Biophysica Acta, 1543(2):361-382.

[4] Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1-2):248-254.

[5] Cantwell, B.A., McConnell, D.J., 1983. Molecular cloning and expression of a Bacillus subtilis β-glucanase gene in Escherichia coli. Gene, 23(2):211-219.

[6] Cantwell, B.A., Brazil, G., Murphy, N., McConnell, D.J., 1986. Comparison of expression of the endo-β-1,3-1,4-glucanase gene from Bacillus subtilis in Saccharomyces cerevisiae from the CYC1 and ADH1 promoters. Curr. Genet., 11(1):65-70.

[7] Cooper, D.J., Stewart, G.G., Bryce, J.H., 2000. Yeast proteolytic activity during high and low gravity wort fermentations and its effect on head retention. J. Inst. Brew., 1066(4):197-201.

[8] Court, D.L., Sawitzke, J.A., Thomason, L.C., 2002. Genetic engineering using homologous recombination. Ann. Rev. Genet., 36(1):361-388.

[9] Gaiser, O.J., Piotukh, K., Ponnuswamy, M.N., Planas, A., Borriss, R., Heinemann, U., 2006. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-β-glucanase. J. Mol. Biol., 357(4):1211-1225.

[10] Grujic, O., 1998. Application of a commercial enzyme preparation in the barley malting process. J. Inst. Brew., 104(5):249-253.

[11] He, G.Q., Wang, Z.Y., Liu, Z.S., Chen, Q.H., Ruan, H., Schwarz, P.B., 2006. Relationship of proteinase activity, foam proteins, and head retention in unpasteurized beer. J. Am. Soc. Brew. Chem., 64(1):33-38.

[12] Hinchliffe, E., Box, W.G., 1984. Expression of the cloned endo-1,3-1,4-β-glucanase gene of Bacillus subtilis in Saccharomyces cerevisiae. Curr. Genet., 8(6):471-475.

[13] Jin, Y.L., Speers, R.A., Paulson, A.T., Stewart, R.J., 2004. Barley β-glucans and their degradation during malting and brewing. Technical Quarterly-Master Brewers Association of the Americas, 41(3):231-240.

[14] Jones, E.W., 1991. Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol., 194:429-453.

[15] Jones, E.W., Zubenko, G.S., Parker, R.R., 1982. PEP4 gene function is required for expression of several vacuolar hydrolases in Sacchromyces cerevisiae. Genetics, 102(4):665-677.

[16] Kettunen, A., Hamalainen, J.J., Stenholm, K., Pietilä, K., 1996. A model for the prediction of β-glucan concentration during mashing. J. Food Eng., 29(2):185-200.

[17] Marques, M., Mojzita, D., Amorim, M.A., Almeida, T., Hohmann, S., Moradas, F.P., Costa, V., 2006. The Pep4p vacuolar proteinase contributes to the turnover of oxidized proteins but PEP4 overexpression is not sufficient to increase chronological lifespan in Saccharomyces cerevisiae. Microbiology, 152(12):3595-3605.

[18] Muldbjerg, M., Meldal, M., Breddam, K., Sigsgaard, P., 1993. Protease activity in beer and correlation of foam. Proc. Congr. Eur. Brew. Conv., 25:357-364.

[19] Müller, J.J., Thomsen, K.K., Heinemann, U., 1998. Crystal structure of barley 1,3-1,4-β-glucanase at 2.0-Å resolution and comparison with Bacillus 1,3-1,4-β-glucanase. J. Biol. Chem., 273(6):3438-3446.

[20] Olsen, O., Thomsen, K.K., 1989. Processing and secretion of barley (1-3,1-4)-β-glucanase in yeast. Carlsberg. Res. Commun., 54(2):29-39.

[21] Palmer, G.H., 1989. Cereals in Malting and Brewing. In: Palmer, G.H. (Ed.), Cereal Science and Technology. Aberdeen University Press, Aberdeen, UK, p.61-242.

[22] Panttilä, M.E., André, L., Saloheimo, M., Lehtovaara, P., Knowles, J.K., 1987a. Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae. Yeast, 3(3):175-185.

[23] Panttilä, M.E., Suihko, U., Lehtinen, M., Nikkola, M., Knowles, J.K.C., 1987b. Construction of brewer’s yeasts secreting fungal endo-β-glucanase. Curr. Genet., 12(6):413-420.

[24] Rothman, J.H., Hunter, C.P., Valls, L.A., Stevens, T.H., 1986. Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene. Proc. Natl. Acad. Sci. USA, 83(10):3248-3252.

[25] Rupp, S., Wolf, D.H., , 1995. The use of active-site mutants of proteinase yscA to determine the necessity of the enzyme for vacuolar proteinase maturation and proteinase yscB stability. Eur. J. Biochem., 231(1):115-125.

[26] Stevens, T.H., Esmon, B., Schekman, R., 1982. Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell, 30(2):439-448.

[27] Sudarmana, D.L., Goldsmith, M.R., Hinh, A.H., Pecar, M.A., Hawthorne, D.B., Kavanagh, T.E., 1996. Microfiltration studies with a modified membrane filterability procedure. Technical Quarterly-Master Brewers Association of the Americas, 33(1):63-72.

[28] Todo, V., Carbonell, J.V., Sendra, J.M., 1989. Kinetics of β-glucan degradation in wort by exogenous β-glucanases treatment. J. Inst. Brew., 95(6):419-422.

[29] van Rensburg, P., van Zyl, W.H., Pretorius, I.S., 1997. Over-expression of the Saccharomyces cerevisiae exo-β-1,3-glucanase gene together with the Bacillus subtilis endo-β-1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo-β-1,4-glucanase gene in yeast. J. Biotechnol., 55(1):43-53.

[30] Wang, Z.Y., He, G.Q., Liu, Z.S., Ruan, H., Chen, Q.H., Xiong, H.P., 2005. Purification of yeast proteinase A from fresh beer and its specificity on foam proteins. Int. J. Food Sci. Tech., 40(8):835-840.

[31] Wang, Z.Y., He, G.Q., Ruan, H., Liu, Z.S., Yang, L.F., Zhang, B.R., 2007a. Construction of proteinase A deficient transformant of industrial brewing yeast. Eur. Food Res. Technol., 225(5-6):831-835.

[32] Wang, Z.Y., He, X.P., Zhang, B.R., 2007b. Over-expression of GSH1 gene and disruption of PEP4 gene in self-cloning industrial brewer’s yeast. Int. J. Food Microbiol., 119(3):192-199.

[33] Wolf, M., Attila, G., Ortwin, S., Rainer, B., 1995. Genes encoding xylan and β-glucan hydrolyzing enzymes in Bacillus subtilis: characterization, mapping and construction of strain deficient in lichenase, cellulose and xylanase. Microbiology, 141(2):281-290.

[34] Wood, P.J., Erfle, J.D., Teather, R.M., 1988. Use of complex formation between Congo Red and polysaccharides hydrolases in detection and assay of polysaccharide hydrolases. Methods Enzymol., 160:59-74.

[35] Woolford, C.A., Daniels, L.B., Park, F.J., Jones, E.W., Arsdell, J.V., Innis, M.A., 1986. The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisae vacuolar hydrolases. Mol. Cell Biol., 6(7):2500-2510.

[36] Yokoi, S., Shigyo, T., Tamaki, T., 1996. A fluorometric assay for proteinase A in beer and its application for investigation of enzymatic effects on foam stability. J. Inst. Brew., 1022(1):33-37.

[37] Zubenko, G.S., Park, F.J., Jones, E.W., 1983. Mutations in PEP4 locus of Saccharomyces cerevisiae block final step in maturation of two vacuolar hydrolases. Proc. Natl. Acad. Sci. USA, 80(2):510-514.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE