Full Text:   <1952>

CLC number: R57; R58

On-line Access: 2010-03-29

Received: 2009-10-20

Revision Accepted: 2010-01-05

Crosschecked: 2010-03-12

Cited: 30

Clicked: 6627

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2010 Vol.11 No.4 P.227-237


Urinary proteomics as a novel tool for biomarker discovery in kidney diseases

Author(s):  Jing Wu, Yi-ding Chen, Wei Gu

Affiliation(s):  Department of Endocrinology and Metabolism, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China, Department of Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China

Corresponding email(s):   guwei1957@yahoo.com.cn

Key Words:  Clinical proteomics, Urinary proteomics, Biomarker, Kidney diseases

Share this article to: More |Next Article >>>

Jing Wu, Yi-ding Chen, Wei Gu. Urinary proteomics as a novel tool for biomarker discovery in kidney diseases[J]. Journal of Zhejiang University Science B, 2010, 11(4): 227-237.

@article{title="Urinary proteomics as a novel tool for biomarker discovery in kidney diseases",
author="Jing Wu, Yi-ding Chen, Wei Gu",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Urinary proteomics as a novel tool for biomarker discovery in kidney diseases
%A Jing Wu
%A Yi-ding Chen
%A Wei Gu
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 4
%P 227-237
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0900327

T1 - Urinary proteomics as a novel tool for biomarker discovery in kidney diseases
A1 - Jing Wu
A1 - Yi-ding Chen
A1 - Wei Gu
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 4
SP - 227
EP - 237
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0900327

Urine has become one of the most attractive biofluids in clinical proteomics, for its procurement is easy and noninvasive and it contains sufficient proteins and peptides. urinary proteomics has thus rapidly developed and has been extensively applied to biomarker discovery in clinical diseases, especially kidney diseases. In this review, we discuss two important aspects of urinary proteomics in detail, namely, sample preparation and proteomic technologies. In addition, data mining in urinary proteomics is also briefly introduced. At last, we present several successful examples on the application of urinary proteomics for biomarker discovery in kidney diseases, including diabetic nephropathy, IgA nephropathy, lupus nephritis, renal Fanconi syndrome, acute kidney injury, and renal allograft rejection.

lated continuously. These behavioral parameters of Tilapia school responded sensitively to moderate and high UIA concentration. Under high UIA concentration the fish activity showed a significant increase (P<0.05), exhibiting an avoidance reaction to high ammonia condition, and then decreased gradually. Under moderate and high UIA concentration the school’s vertical location had significantly large fluctuation (P<0.05) with the school moving up to the water s

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Ahmed, F.E., 2009. Utility of mass spectrometry for proteome analysis: Part II. Ion-activation methods, statistics, bioinformatics and annotation. Expert Rev. Proteomics, 6(2):171-197.

[2]Bellei, E., Rossi, E., Lucchi, L., Uggeri, S., Albertazzi, A., Tomasi, A., Iannone, A., 2008. Proteomic analysis of early urinary biomarkers of renal changes in type 2 diabetic patients. Proteomics Clin. Appl., 2(4):478-491.

[3]Caiazzo, R.J.Jr., Maher, A.J., Drummond, M.P., Lander, C.I., Tassinari, O.W., Nelson, B.P., Liu, B.C.S., 2009. Protein microarrays as an application for disease biomarkers. Proteomics Clin. Appl., 3(2):138-147.

[4]Cutillas, P.R., Norden, A.G., Cramer, R., Burlingame, A.L., Unwin, R.J., 2003. Detection and analysis of urinary peptides by on-line liquid chromatography and mass spectrometry: application to patients with renal Fanconi syndrome. Clin. Sci. (Lond), 104(5):483-490.

[5]Dakna, M., He, Z., Yu, W.C., Mischak, H., Kolch, W., 2009. Technical, bioinformatical and statistical aspects of liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) based clinical proteomics: a critical assessment. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 877(13):1250-1258.

[6]Drube, J., Schiffer, E., Mischak, H., Kemper, M.J., Neuhaus, T., Pape, L., Lichtinghagen, R., Ehrich, J.H., 2009. Urinary proteome pattern in children with renal Fanconi syndrome. Nephrol. Dial. Transplant., 24(7):2161-2169.

[7]Feng, X., Liu, X., Luo, Q., Liu, B.F., 2008. Mass spectrometry in systems biology: an overview. Mass Spectrom. Rev., 27(6):635-660.

[8]Fiedler, G.M., Baumann, S., Leichtle, A., Oltmann, A., Kase, J., Thiery, J., Ceglarek, U., 2007. Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin. Chem., 53(3):421-428.

[9]Finkel, E., 2006. Cloudy or clear? Best forecast for urine cultures. CAP Today, 20(11):86-90.

[10]Fung, E.T., Weinberger, S.R., Gavin, E., Zhang, F., 2005. Bioinformatics approaches in clinical proteomics. Expert Rev. Proteomics, 2(6):847-862.

[11]Gu, W., Zou, L.X., Shan, P.F., Chen, Y.D., 2008. Analysis of urinary proteomic patterns for diabetic nephropathy by ProteinChip. Proteomics Clin. Appl., 2(5):744-750.

[12]Haubitz, M., Wittke, S., Weissinger, E.M., Walden, M., Rupprecht, H.D., Floege, J., Haller, H., Mischak, H., 2005. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int., 67(6):2313-2320.

[13]Ho, J., Lucy, M., Krokhin, O., Hayglass, K., Pascoe, E., Darroch, G., Rush, D., Nickerson, P., Rigatto, C., Reslerova, M., 2009. Mass spectrometry-based proteomic analysis of urine in acute kidney injury following cardiopulmonary bypass: a nested case-control study. Am. J. Kidney Dis., 53(4):584-595.

[14]Hoorn, E.J., Pistkun, T., Zietse, R., Gross, P., Frokiaer, J., Wang, N.S., Gonzales, P.A., Star, R.A., Knepper, M.A., 2005. Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. Nephrology (Carlton), 10(3):283-290.

[15]Huang, F., Clifton, J., Yang, X., Rosenquist, T., Hixson, D., Kovac, S., Josic, D., 2009. SELDI-TOF as a method for biomarker discovery in the urine of aristolochic-acid-treated mice. Electrophoresis, 30(7):1168-1174.

[16]Jiang, H., Guan, G., Zhang, R., Liu, G., Cheng, J., Hou, X., Cui, Y., 2009a. Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy. Diabetes Metab. Res. Rev., 25(3):232-241.

[17]Jiang, H., Guan, G., Zhang, R., Liu, G., Liu, H., Hou, X., Cheng, J., 2009b. Increased urinary excretion of orosomucoid is a risk predictor of diabetic nephropathy. Nephrology (Carlton), 14(3):332-337.

[18]Klasen, I.S., Reichert, L.J., de Kat Angelino, C.M., Wetzels, J.F., 1999. Quantitative determination of low and high molecular weight proteins in human urine: influence of temperature and storage time. Clin. Chem., 45(3):430-432.

[19]Lapolla, A., Seraglia, R., Molin, L., Williams, K., Cosma, C., Reitano, R., Sechi, A., Ragazzie, E., Traldi, P., 2009. Low molecular weight proteins in urines from healthy subjects as well as diabetic, nephropathic and diabetic-nephropathic patients: a MALDI study. J. Mass Spectrom., 44(3):419-425.

[20]Lee, R.S., Monigatti, F., Briscoe, A.C., Waldon, Z., Freeman, M.R., Steen, H., 2008. Optimizing sample handling for urinary proteomics. J. Proteome Res., 7(9):4022-4030.

[21]Lifshitz, E., Kramer, L., 2000. Outpatient urine culture: dose collection technique matter? Arch. Intern. Med., 160(16):2537-3540.

[22]Liu, J., Chen, C.F., Tsao, C.W., Chang, C.C., Chu, C.C., Devoe, D.L., 2009. Polymer microchips jntegrating solid-phase extraction and high-performance liquid chromatography using reversed-phase polymethacrylate monoliths. Anal. Chem., 81(7):2545-2554.

[23]López, J.L., 2007. Two-dimensional electrophoresis in proteome expression analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 849(1-2):190-202.

[24]Mischak, H., Julian, B.A., Novak, J., 2007. High-resolution proteome/peptidome analysis of peptides and low-molecular-weight proteins in urine. Proteomics Clin. Appl., 1(8):792-804.

[25]Mischak, H., Coon, J.J., Novak, J., Weissinger, E.M., Schanstra, J.P., Dominiczak, A.F., 2009. Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom. Rev., 28(5):703-724.

[26]Mosley, K., Tam, F.W., Edwards, R.J., Crozier, J., Pusey, C.D., Lightstone, L., 2006. Urinary proteomic profiles distinguish between active and inactive lupus nephritis. Rheumatology (Oxford), 45(12):1497-1504.

[27]Najam-ul-Haq, M., Rainer, M., Trojer, L., Feuerstein, I., Vallant, R.M., Huck, C.W., Bakry, R., Bonn, G.K., 2007. Alternative profiling platform based on MELDI and its applicability in clinical proteomics. Expert Rev. Proteomics, 4(4):447-452.

[28]Nguyen, M.T., Ross, G.F., Dent, C.L., Devarajan, P., 2005. Early prediction of acute renal injury using urinary proteomics. Am. J. Nephrol., 25(4):318-326.

[29]Nguyen, M.T., Dent, C.L., Ross, G.F., Harris, N., Manning, P.B., Mitsnefes, M.M., Devarajan, P., 2008. Urinary aprotinin as a predictor of acute kidney injury after cardiac surgery in children receiving aprotinin therapy. Pediatr. Nephrol., 23(8):1317-1326.

[30]O′Farrell, P.H., 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 250(10):4007-4021.

[31]O′Riordan, E., Orlova, T.N., Podust, V.N., Chander, P.N., Yanagi, S., Nakazato, M., Hu, R., Butt, K., Delaney, V., Goligorsky, M.S., 2007. Characterization of urinary peptide biomarkers of acute rejection in renal allografts. Am. J. Transplant., 7(4):930-940.

[32]Orvisky, E., Drake, S.K., Martin, B.M., Abdel-Hamid, M., Ressom, H.W., Varghese, R.S., An, Y., Saha, D., Hortin, G.L., Loffredo, C.A., et al., 2006. Enrichment of low molecular weight fraction of serum for MS analysis of peptides associated with hepatocellular carcinoma. Proteomics, 6(9):2895-2902.

[33]Palmblad, M., Tiss, A., Cramer, R., 2009. Mass spectrometry in clinical proteomics—from the present to the future. Proteomics Clin. Appl., 3(1):6-17.

[34]Penque, D., 2009. Two-dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteomics Clin. Appl., 3(2):155-172.

[35]Quintana, L.F., Solé-Gonzalez, A., Kalko, S.G., Bañon-Maneus, E., Solé, M., Diekmann, F., Gutierrez-Dalmau, A., Abian, J., Campistol, J.M., 2009. Urine proteomics to detect biomarkers for chronic allograft dysfunction. J. Am. Soc. Nephrol., 20(2):428-435.

[36]Rocchetti, M.T., Centra, M., Papale, M., Bortone, G., Palermo, C., Centonze, D., Ranieri, E., Paolo, S.D., Gesualdo, L., 2008. Urine protein profile of IgA nephropathy patients may predict the response to ACE-inhibitor therapy. Proteomics, 8(1):206-216.

[37]Saito, M., Kimoto, M., Araki, T., Shimada, Y., Fujii, R., Oofusa, K., Hide, M., Usui, T., Yoshizato, K., 2005. Proteome analysis of gelatin-bound urinary proteins from patients with bladder cancers. Eur. Urol., 48(5):865-871.

[38]Schaub, S., Wilkins, J., Weiler, T., Sangster, K., Rush, D., Nickerson, P., 2004. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int., 65(1):323-332.

[39]Schaub, S., Wilkins, J.A., Antonovici, M., Krokhin, O., Weiler, T., Rush, D., Nickerson, P., 2005. Proteomic-based identification of cleaved urinary β2-microglobulin as a potential marker of acute tubular injury in renal allograft. Am. J. Transplant., 5(4 Pt 1):729-738.

[40]Suzuki, M., Wiers, K., Brooks, E.B., Greis, K.D., Haines, K., Klein-Gitelman, M.S., Olson, J., Onel, K., O'Neil, K.M., Silverman, E.D., et al., 2009. Initial validation of a novel protein biomarker panel for active pediatric lupus nephritis. Pediatr. Res., 65(5):530-536.

[41]Theodorescu, D., Fliser, D., Wittke, S., Mischak, H., Krebs, R., Walden, M., Ross, M., Eltze, E., Bettendorf, O., Wulfing, C., Semjonow, A., 2005. Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis, 26(14):2797-2808.

[42]Theodorescu, D., Schiffer, E., Bauer, H.W., Douwes, F., Eichhorn, F., Polley, R., Schmidt, T., Schöfer, W., Zürbig, P., Good, D.M., et al., 2008. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin. Appl., 2(4):556-570.

[43]Thongboonkerd, V., 2007. Practical points in urinary proteomics. J. Proteome Res., 6(10):3881-3890.

[44]Timms, J.F., Cramer, R., 2008. Difference gel electrophoresis. Proteomics, 8(23-24):4886-4897.

[45]Vestergaard, P., Leverett, R., 1958. Constancy of urinary creatinine excretion. J. Lab. Clin. Med., 51(2):211-218.

[46]von Zur Muhlen, C., Schiffer, E., Zuerbig, P., Kellmann, M., Brasse, M., Meert, N., Vanholder, R.C., Dominiczak, A.F., Chen, Y.C., Mischak, H., et al., 2009. Evaluation of urine proteome pattern analysis for its potential to reflect coronary artery atherosclerosis in symptomatic patients. J. Proteome Res., 8(1):335-345.

[47]Weissinger, E.M., Schiffer, E., Hertenstein, B., Ferrara, J.L., Holler, E., Stadler, M., Kolb, H.J., Zander, A., Zurbig, P., Kellmann, M., Ganser, A., 2007. Proteomic patterns predict acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood, 109(12):5511-5519.

[48]Wu, R., Hu, L., Wang, F., Ye, M., Zou, H., 2008. Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J. Chromatogr. A, 1184(1-2):369-392.

[49]Zerefos, P.G., Vlahou, A., 2008. Urine sample preparation and protein profiling by two-dimensional electrophoresis and matrix-assisted laser desorption ionization time of flight mass spectroscopy. Methods Mol. Biol., 428:141-157.

[50]Zhang, X., Jin, M., Wu, H., Nadasdy, T., Nadasdy, G., Harris, N., Green-Church, K., Nagaraja, H., Birmingham, D.J., Yu, C.Y., et al., 2008. Biomarkers of lupus nephritis determined by serial urine proteomics. Kidney Int., 74(6):799-807.

[51]Zhou, H., Yuen, P.S., Pisitkun, T., Gonzales, P.A., Yasuda, H., Dear, J.W., Gross, P., Knepper, M.A., Star, R.A., 2006a. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int., 69(8):1471-1476.

[52]Zhou, H., Pisitkun, T., Aponte, A., Yuen, P.S., Hoffert, J.D., Yasuda, H., Hu, X., Chawla, L., Shen, R.F., Knepper, M.A., et al., 2006b. Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int., 70(10):1847-1857.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE