Full Text:   <3496>

CLC number: Q547

On-line Access: 2013-01-31

Received: 2012-06-26

Revision Accepted: 2012-09-04

Crosschecked: 2013-01-15

Cited: 7

Clicked: 6962

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2013 Vol.14 No.2 P.115-123

http://doi.org/10.1631/jzus.B1200175


Conjugated linoleic acid isomers and their precursor fatty acids regulate peroxisome proliferator-activated receptor subtypes and major peroxisome proliferator responsive element-bearing target genes in HepG2 cell model


Author(s):  Sailas Benjamin, Silke Flotho, Torsten Börchers, Friedrich Spener

Affiliation(s):  Department of Biochemistry, University of Münster, 48149 Münster, Germany; more

Corresponding email(s):   sailasben@yahoo.co.in

Key Words:  Conjugated linoleic acid, HepG2 cell model, qRT-PCR, Peroxisome proliferator-activated receptor, Peroxisome proliferator responsive element-bearing genes, Lipid agonists


Sailas Benjamin, Silke Flotho, Torsten Börchers, Friedrich Spener. Conjugated linoleic acid isomers and their precursor fatty acids regulate peroxisome proliferator-activated receptor subtypes and major peroxisome proliferator responsive element-bearing target genes in HepG2 cell model[J]. Journal of Zhejiang University Science B, 2013, 14(2): 115-123.

@article{title="Conjugated linoleic acid isomers and their precursor fatty acids regulate peroxisome proliferator-activated receptor subtypes and major peroxisome proliferator responsive element-bearing target genes in HepG2 cell model",
author="Sailas Benjamin, Silke Flotho, Torsten Börchers, Friedrich Spener",
journal="Journal of Zhejiang University Science B",
volume="14",
number="2",
pages="115-123",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200175"
}

%0 Journal Article
%T Conjugated linoleic acid isomers and their precursor fatty acids regulate peroxisome proliferator-activated receptor subtypes and major peroxisome proliferator responsive element-bearing target genes in HepG2 cell model
%A Sailas Benjamin
%A Silke Flotho
%A Torsten Börchers
%A Friedrich Spener
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 2
%P 115-123
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200175

TY - JOUR
T1 - Conjugated linoleic acid isomers and their precursor fatty acids regulate peroxisome proliferator-activated receptor subtypes and major peroxisome proliferator responsive element-bearing target genes in HepG2 cell model
A1 - Sailas Benjamin
A1 - Silke Flotho
A1 - Torsten Börchers
A1 - Friedrich Spener
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 2
SP - 115
EP - 123
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200175


Abstract: 
The purpose of this study was to examine the induction profiles (as judged by quantitative reverse transcription polymerase chain reaction (qRT-PCR)) of peroxisome proliferator-activated receptor (PPAR) α, β, γ subtypes and major PPAR-target genes bearing a functional peroxisome proliferator responsive element (PPRE) in hepG2 cell model upon feeding with cis-9,trans-11-octadecadienoic acid (9-CLA) or trans-10,cis-12-octadecadienoic acid (10-CLA) or their precursor fatty acids (FAs). HepG2 cells were treated with 100 μmol/L 9-CLA or 10-CLA or their precursor FAs, viz., oleic, linoleic, and trans-11-vaccenic acids against bezafibrate control to evaluate the induction/expression profiles of PPAR α, β, γ subtypes and major PPAR-target genes bearing a functional PPRE, i.e., fatty acid transporter (FAT), glucose transporter-2 (GLUT-2), liver-type FA binding protein (L-FABP), acyl CoA oxidase-1 (ACOX-1), and peroxisomal bifunctional enzyme (PBE) with reference to β-actin as house keeping gene. Of the three housekeeping genes (glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-actin, and ubiquitin), β-actin was found to be stable. Dimethyl sulfoxide (DMSO), the common solubilizer of agonists, showed a significantly higher induction of genes analyzed. qRT-PCR profiles of CLAs and their precursor FAs clearly showed upregulation of FAT, GLUT-2, and L-FABP (~0.5–2.0-fold). Compared to 10-CLA, 9-CLA decreased the induction of the FA metabolizing gene ACOX-1 less than did PBE, while 10-CLA decreased the induction of PBE less than did ACOX-1. Both CLAs and precursor FAs upregulated PPRE-bearing genes, but with comparatively less or marginal activation of PPAR subtypes. This indicates that the binding of CLAs and their precursor FAs to PPAR subtypes results in PPAR activation, thereby induction of the target transporter genes coupled with downstream lipid metabolising genes such as ACOX-1 and PBE. To sum up, the expression profiles of these candidate genes showed that CLAs and their precursor FAs are involved in lipid signalling by modulating the PPAR α, β, or γ subtype for the indirect activation of the PPAR-target genes, which may in turn be responsible for the supposed health effects of CLA, and that care should be taken while calculating the actual fold induction values of candidate genes with reference to housekeeping gene and DMSO as they may impart false positive results.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aldai, N., Dugan, M.E.R., Kramer, J.K.G., Mir, P.S., McAllister, T.A., 2008. Nonionophore antibiotics do not affect the trans-18:1 and conjugated linoleic acid composition in beef adipose tissue. J. Anim. Sci., 86(12):3522-3532.

[2]Bauman, D.E., Griinari, J.M., 2001. Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livest. Prod. Sci., 70(1-2):15-29.

[3]Belury, M.A., Kavanaugh, C.J., Liu, K.L., 2007. Conjugated linoleic acid modulates phorbol ester-induced PPARδ and K-FABP mRNA expression in mouse skin. Nutr. Res., 27(1):48-55.

[4]Benjamin, S., Spener, F., 2009. Conjugated linoleic acids as functional food: an insight into their health benefits. Nutr. Metab., 6(1):36.

[5]Benjamin, S., Hanhoff, T., Börchers, T., Spener, F., 2005. A molecular test system for the screening of human PPAR transactivation by conjugated linoleic acid isomers and their precursor fatty acids. Eur. J. Lipid Sci. Technol., 107(10):706-715.

[6]Cheung, W.M.W., Ng, W.W., Kung, A.W.C., 2006. Dimethyl sulfoxide as an inducer of differentiation in preosteoblast MC3T3-E1 cells. FEBS Lett., 580(1):121-126.

[7]Clement, L., Poirier, H., Niot, I., Bocher, V., Guerre-Millo, M., Krief, S., Staels, B., Besnard, P., 2002. Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J. Lipid Res., 43(9):1400-1409.

[8]Deprez, R.H.L., Fijnvandraat, A.C., Ruijter, J.M., Moorman, A.F.M., 2002. Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Anal. Biochem., 307(1):63-69.

[9]Frederiksen, K.S., Wulff, E.M., Sauerberg, P., Mogensen, J.P., Jeppesen, L., Fleckner, J., 2004. Prediction of PPARα ligand-mediated physiological changes using gene expression profiles. J. Lipid Res., 45(3):592-601.

[10]Fujiwara, Y., Yokoyama, M., Sawada, R., Seyama, Y., Ishii, M., Tsutsumi, S., Aburatani, H., Hanaka, S., Itakura, H., Matsumoto, A., 2003. Analysis of the comprehensive effects of polyunsaturated fatty acid on mRNA expression using a gene chip. J. Nutr. Sci. Vitaminol. (Tokyo), 49(2):125-132.

[11]Griinari, J.M., Corl, B.A., Lacy, S.H., Chouinard, P.Y., Nurmela, K.V., Bauman, D.E., 2000. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. J. Nutr., 130(9):2285-2291.

[12]Kassam, A., Capone, J.P., Rachubinski, R.A., 2001. The short heterodimer partner receptor differentially modulates peroxisome proliferator-activated receptor α-mediated transcription from the peroxisome proliferator-response elements of the genes encoding the peroxisomal β-oxidation enzymes acyl-CoA oxidase and hydratase-dehydrogenase. Mol. Cell. Endocrinol., 176(1-2):49-56.

[13]Kim, H.I., Kim, J.W., Kim, S.H., Cha, J.Y., Kim, K.S., Ahn, Y.H., 2000. Identification and functional characterization of the peroxisomal proliferator response element in rat GLUT2 promoter. Diabetes, 49(9):1517-1524.

[14]Kuhnt, K., Flotho, S., Benjamin, S., Boerchers, T., Schubert, R., Jahreis, G., Spener, F., 2009. Gene expression after dietary intervention with trans fatty acids (trans-11/trans-12 18:1) in humans. Eur. J. Lipid Sci. Technol., 111(5):442-450.

[15]Liu, C.H., Chu, I.M., Hwang, S.M., 2001. Enhanced expression of various exogenous genes in recombinant Chinese hamster ovary cells in presence of dimethyl sulfoxide. Biotechnol. Lett., 23(20):1641-1645.

[16]Liu, C.J., Gong, F.M., Li, X.R., Li, H.Y., Zhang, Z.H., Feng, Y., Nagano, H., 2012. Natural populations of lactic acid bacteria in douchi from Yunnan Province, China. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 13(4):298-306.

[17]Masson, M.J., Carpenter, L.D., Graf, M.L., Pohl, L.R., 2008. Pathogenic role of NKT and NK cells in acetaminophen-induced liver injury is dependent on the presence of DMSO. Hepatology, 48(3):889-897.

[18]McNeel, R.L., Smith, E.O., Mersmann, H.J., 2003. Isomers of conjugated linoleic acid modulate human preadipocyte differentiation. In Vitro Cell. Dev. Biol. Anim., 39(8):375-382.

[19]Meadus, M.J., 2003. A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression. Biol. Proc. Online, 5(1):20-28.

[20]Moya-Camarena, S.Y., Vanden Heuvel, J.P., Blanchard, S.G., Leesnitzer, L.A., Belury, M.A., 1999. Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARα. J. Lipid Res., 40(8):1426-1433.

[21]Nguyen, P., Leray, V., Diez, M., Serisier, S., Le Bloc'h, J., Siliart, B., Dumon, H., 2008. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr., 92(3):272-283.

[22]Park, Y., Pariza, M.W., 2007. Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res. Internat., 40(3):311-323.

[23]Platt, I., Rao, L.G., El-Sohemy, A., 2007. Isomer-specific effects of conjugated linoleic acid on mineralized bone nodule formation from human osteoblast-like cells. Exp. Biol. Med., 232(2):246-252.

[24]Ruby, M.A., Goldenson, B., Orasanu, G., Johnston, T.P., Plutzky, J., Krauss, R.M., 2010. VLDL hydrolysis by LPL activates PPAR-α through generation of unbound fatty acids. J. Lipid Res., 51(8):2275-2281.

[25]Sato, O., Kuriki, C., Fukui, Y., Motojima, K., 2002. Dual promoter structure of mouse and human fatty acid translocase/CD36 genes and unique transcriptional activation by peroxisome proliferator-activated receptor α and γ ligands. J. Biol. Chem., 277(18):15703-15711.

[26]Schachtrup, C., Emmler, T., Bleck, B., Sandqvist, A., Spener, F., 2004. Functional analysis of peroxisome-proliferator-responsive element motifs in genes of fatty acid-binding proteins. Biochem. J., 382(Pt 1):239-245.

[27]Weldon, S., Mitchell, S., Kelleher, D., Gibney, M.J., Roche, H.M., 2004. Conjugated linoleic acid and atherosclerosis: no effect on molecular markers of cholesterol homeostasis in THP-1 macrophages. Atherosclerosis, 174(2):261-273.

[28]Wolfrum, C., Borrmann, C.M., Borchers, T., Spener, F., 2001. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors α- and γ-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. PNAS, 98(5):2323-2328.

[29]Yu, H.N., Lee, Y.R., Noh, E.M., Lee, K.S., Song, E.K., Han, M.K., Lee, Y.C., Yim, C.Y., Park, J., Kim, B.S., et al., 2008. Tumor necrosis factor-α enhances DMSO-induced differentiation of HL-60 cells through the activation of ERK/MAPK pathway. Int. J. Haematol., 87:89-194.

[30]Zhao, Z.Y., Wu, T.X., Tang, H.G., Zhang, J.Z., 2008. Influence of dietary conjugated linoleic acid on growth, fatty acid composition and hepatic lipogenesis in large yellow croaker (Pseudosciaena crocea R.). J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 9(9):691-700.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE