Full Text:   <2982>

Summary:  <2022>

CLC number: S828

On-line Access: 2015-06-08

Received: 2014-09-26

Revision Accepted: 2015-03-12

Crosschecked: 2015-05-13

Cited: 4

Clicked: 4923

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ze-meng Feng

http://orcid.org/0000-0001-9847-720X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.6 P.524-532

http://doi.org/10.1631/jzus.B1400260


Molecular cloning, characterization and expression of the energy homeostasis-associated gene in piglet


Author(s):  Sheng-ping Wang, Yun-ling Gao, Gang Liu, Dun Deng, Rong-jun Chen, Yu-zhe Zhang, Li-li Li, Qing-qi Wen, Yong-qing Hou, Ze-meng Feng, Zhao-hui Guo

Affiliation(s):  Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; more

Corresponding email(s):   zemengfeng2006@163.com, funfarm@126.com

Key Words:  Adropin, Energy homeostasis-associated (Enho) gene, Gene coloning, Piglets, RT-PCR


Sheng-ping Wang, Yun-ling Gao, Gang Liu, Dun Deng, Rong-jun Chen, Yu-zhe Zhang, Li-li Li, Qing-qi Wen, Yong-qing Hou, Ze-meng Feng, Zhao-hui Guo. Molecular cloning, characterization and expression of the energy homeostasis-associated gene in piglet[J]. Journal of Zhejiang University Science B, 2015, 16(6): 524-532.

@article{title="Molecular cloning, characterization and expression of the energy homeostasis-associated gene in piglet",
author="Sheng-ping Wang, Yun-ling Gao, Gang Liu, Dun Deng, Rong-jun Chen, Yu-zhe Zhang, Li-li Li, Qing-qi Wen, Yong-qing Hou, Ze-meng Feng, Zhao-hui Guo",
journal="Journal of Zhejiang University Science B",
volume="16",
number="6",
pages="524-532",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400260"
}

%0 Journal Article
%T Molecular cloning, characterization and expression of the energy homeostasis-associated gene in piglet
%A Sheng-ping Wang
%A Yun-ling Gao
%A Gang Liu
%A Dun Deng
%A Rong-jun Chen
%A Yu-zhe Zhang
%A Li-li Li
%A Qing-qi Wen
%A Yong-qing Hou
%A Ze-meng Feng
%A Zhao-hui Guo
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 6
%P 524-532
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400260

TY - JOUR
T1 - Molecular cloning, characterization and expression of the energy homeostasis-associated gene in piglet
A1 - Sheng-ping Wang
A1 - Yun-ling Gao
A1 - Gang Liu
A1 - Dun Deng
A1 - Rong-jun Chen
A1 - Yu-zhe Zhang
A1 - Li-li Li
A1 - Qing-qi Wen
A1 - Yong-qing Hou
A1 - Ze-meng Feng
A1 - Zhao-hui Guo
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 6
SP - 524
EP - 532
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400260


Abstract: 
The energy homeostasis-associated (Enho) gene encodes a secreted protein, adropin, which regulates the expression of hepatic lipogenic genes and adipose tissue peroxisome proliferator-activated receptor γ, a major regulator of lipogenesis. In the present study, the porcine (Sus scrofa) homologue of the Enho gene, which was named pEnho, was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using oligonucleotide primers derived from in silico sequences. The gene sequence was submitted into the GenBank of NCBI, and the access number is GQ414763. The pEnho encodes a protein of 76 amino acids which shows 75% similarity to Homo sapiens adropin. The expression profile of pEnho in tissues (liver, muscle, anterior jejunum, posterior jejunum, and ileum) was determined by quantitative real-time RT-PCR. pEnho was localized on porcine chromosome 10 and no introns were found. In conclusion, pEnho was cloned and analysed with the aim of increasing knowledge about glucose and lipid metabolism in piglets and helping to promote the health and growth of piglets through adropin regulation.

猪Enho基因的分子克隆及其仔猪的组织分布

目的:通过pEnho基因的克隆,分析pEnho基因在仔猪相关组织的分布情况,增加仔猪糖脂代谢方面相关的知识,为通过调控adropin来促进仔猪的健康和生长提供理论基础。
创新点:首次克隆了猪Enho基因,命名为pEnho,其基因序列提交至美国国立生物技术信息中心(NCBI)(No.GQ414763)。
方法:通过实时荧光定量逆转录聚合酶链式反应(real-timeRT-PCR)方法获得猪Enho基因序列,并应用BLAST、ClustalW、PHYLIP、TMHMM、Helixturnhelix等生物信息学软件对其基因序列进行分析;通过荧光定量PCR方法检测了不同日龄(出生后1、7、14和21天)猪Enho基因的组织分布(肝脏、肌肉、空肠前端、空肠后端和回肠)。
结论:克隆得到pEnho基因序列;发现随着仔猪日龄的增加,其表达量有下降;在组织分布上,产后7天内pEnho在肠道(特别是回肠)的表达量较高,在第14天和第21天,各被检组织的表达量无显著差异。

关键词:Adropin;Enho;基因克隆;仔猪;定量PCR

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aydin, S., 2013. Presence of adropin, nesfatin-1, apelin-12, ghrelins and salusinspeptides in the milk, cheese whey and plasma of dairy cows. Peptides, 43:83-87.

[2]Aydin, S., Kuloglu, T., Aydin, S., 2013a. Copeptin, adropin and irisin concentrations in breast milk and plasma of healthy women and those with gestational diabetes mellitus. Peptides, 47:66-70.

[3]Aydin, S., Kuloglu, T., Aydin, S., et al., 2013b. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes. Mol. Cell. Biochem., 380(1-2):73-81.

[4]Aydin, S., Kuloglu, T., Aydin, S., et al., 2014. Elevated adropin: a candidate diagnostic marker for myocardial infarction in conjunction with troponin-I. Peptides, 58:91-97.

[5]Butler, A.A., Tam, C.S., Stanhope, K.L., et al., 2012. Low circulating adropin concentrations with obesity and aging correlate with risk factorsfor metabolic disease and increase after gastric bypass surgery in humans. J. Clin. Endocrinol. Metab., 97(10):3783-3791.

[6]Celik, A., Balin, M., Kobat, M.A., et al., 2013. Deficiency of a new protein associated with cardiac syndrome X; called adropin. Cardiovasc. Ther., 31(3):174-178.

[7]Celik, E., Yilmaz, E., Celik, O., et al., 2013. Maternal and fetal adropin levels in gestational diabetes mellitus. J. Perinat. Med., 41(4):375-380.

[8]Ganesh-Kumar, K., Trevaskis, J.L., Lam, D.D., et al., 2008. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell Metab., 8(6):468-481.

[9]Ganesh-Kumar, K., Zhang, J.Y., Gao, S., et al., 2012. Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity, 20(7):1394-1402.

[10]Gao, S., McMillan, R.P., Jacas, J., et al., 2014. Regulation of substrate oxidation preferences in muscle by the peptide hormone adropin. Diabetes, 63(10):3242-3252.

[11]Gavel, Y., von Heijne, G., 1990. Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng., 4(1):33-37.

[12]Geng, M.M., Li, T.J., Kong, X.F., et al., 2011. Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates. Amino Acids, 40(5):1513-1522.

[13]Gozal, D., Kheirandish-Gozal, L., Bhattacharjee, R., et al., 2013. Circulating adropin concentrations in pediatric obstructive sleepapnea: potential relevance to endothelial function. J. Pediatr., 163(4):1122-1126.

[14]He, Q.H., Ren, P.P., Kong, X.F., et al., 2012. Comparison of serum metabolite compositions between obese and lean growing pigs. J. Nutr. Biochem., 23(2):133-139.

[15]Izumi, H., Kosaka, N., Shimizu, T., et al., 2012. Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J. Dairy Sci., 95(9):4831-4841.

[16]Kuloglu, T., Aydin, S., 2014. Immunohistochemical expressions of adropin andinducible nitric oxide synthase in renal tissues of rats with streptozotocin-induced experimental diabetes. Biotech. Histochem., 89(2):104-110.

[17]Lian, W.L., Gu, X.S., Qin, Y.W., et al., 2011. Elevated plasma levels of adropin in heart failure patients. Intern. Med., 50(15):1523-1527.

[18]Lovren, F., Pan, Y., Quan, A., et al., 2010. Adropin is a novel regulator of endothelial function. Circulation, 122(11 Suppl. 1):S185-S192.

[19]Muoio, D.M., Newgard, C.B., 2006. Obesity-related derangements in metabolic regulation. Annu. Rev. Biochem., 75(1):367-401.

[20]Neel, J.V., 1962. Diabetes mellitus: a ‘thrifty’ genotype rendered detrimental by ‘progress’ Am. J. Hum. Genet., 14(4):353-362.

[21]Henchion, M., McCarthy, M., Resconi, V.C., et al., 2014. Meat consumption: trends and quality matters. Meat Sci., 98(3):561-568.

[22]Oosterveer, M.H., van Dijk, T.H., Tietge, U.J.F., et al., 2009. High fat feeding induces hepatic fatty acid elongation in mice. PLoS ONE, 4(6):e6066.

[23]Qiu, X., He, J.R., Zhao, M.G., et al., 2014. Relationship between human cord blood adropin levels and fetal growth. Peptides, 52:19-22.

[24]Sayın, O., Tokgoz, Y., Arslan, N., 2014. Investigation of adropin and leptin levels in pediatric obesity-related nonalcoholic fatty liver disease. J. Pediatr. Endocrinol. Metab., 27(5-6):479-484.

[25]St-Onge, M.P., Shechter, A., Shlisky, J., et al., 2014. Fasting plasma adropin concentrations correlate with fat consumption in human females. Obesity, 22(4):1056-1063.

[26]Tan, B., Yin, Y.L., Liu, Z.Q., et al., 2011. Dietary L-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J. Nutr. Biochem., 22(5):441-445.

[27]Topuz, M., Celik, A., Aslantas, T., et al., 2013. Plasma adropin levels predictendothelial dysfunction like flow-mediated dilatation in patients with type 2 diabetes mellitus. Clin. Res., 61(8):1161-1164.

[28]Wang, W.C., Shi, C.Y., Zhang, J.S., et al., 2009. Molecular cloning, distribution and ontogenetic expression of the oligopeptide transporter PepT1 mRNA in Tibetan suckling piglets. Amino Acids, 37(4):593-601.

[29]Wong, C.M., Wang, Y., Lee, J.T., et al., 2014. Adropin is a brain membrane-bound protein regulating physical activity via NB-3/Notch signaling pathway in mice. J. Biol. Chem., 289(37):25976-25986.

[30]Wu, L., Fang, J., Chen, L., et al., 2014. Low serum adropin is associated with coronary atherosclerosis in type 2 diabetic and non-diabetic patients. Clin. Chem. Lab. Med., 52(5):751-758.

[31]van der Laan, J.W., Brightwell, J., McAnulty, P., et al., 2010. Regulatory acceptability of the minipig in the development of pharmaceuticals, chemicals and other products. J. Pharmacol. Toxicol. Methods, 62(3):184-195.

[32]Yao, K., Yin, Y.L., Chu, W.Y., et al., 2008. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J. Nutr., 138(5):867-872.

[33]Yildirim, B., Celik, O., Aydin, S., 2014. Adropin: a key component and potential gatekeeper of metabolic disturbances in policystic ovarian syndrome. Clin. Exp. Obstet. Gynecol., 41(3):310-312.

[34]Yu, H.Y., Zhao, P., Wu, M.C., et al., 2014. Serum adropin levels are decreased in patients with acute myocardial infarction. Regul. Pept., 190-191:46-49.

[35]Zhang, C., Zhao, L., Xu, W., et al., 2014. Correlation of serum adropin level with coronary artery disease. Natl. Med. J. China, 94(16):1255-1267 (in Chinese).

[36]Zhang, Y.G., Yin, Y.L., Fang, J., et al., 2012. Pig production in subtropical agriculture. J. Sci. Food Agric., 92(5):1016-1024.

[37]Zigman, J.M., Elmquist, J.K., 2003. Minireview: from anorexia to obesity: the yin and yang of body weight control. Endocrinology, 144(9):3749-3756.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE