CLC number: R782.05
On-line Access: 2013-06-04
Received: 2012-11-24
Revision Accepted: 2013-01-17
Crosschecked: 2013-05-10
Cited: 12
Clicked: 6513
Shi-fang Zhao, Wen-jing Dong, Qiao-hong Jiang, Fu-ming He, Xiao-xiang Wang, Guo-li Yang. Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces[J]. Journal of Zhejiang University Science B, 2013, 14(6): 518-525.
@article{title="Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces",
author="Shi-fang Zhao, Wen-jing Dong, Qiao-hong Jiang, Fu-ming He, Xiao-xiang Wang, Guo-li Yang",
journal="Journal of Zhejiang University Science B",
volume="14",
number="6",
pages="518-525",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200327"
}
%0 Journal Article
%T Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces
%A Shi-fang Zhao
%A Wen-jing Dong
%A Qiao-hong Jiang
%A Fu-ming He
%A Xiao-xiang Wang
%A Guo-li Yang
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 6
%P 518-525
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200327
TY - JOUR
T1 - Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces
A1 - Shi-fang Zhao
A1 - Wen-jing Dong
A1 - Qiao-hong Jiang
A1 - Fu-ming He
A1 - Xiao-xiang Wang
A1 - Guo-li Yang
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 6
SP - 518
EP - 525
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200327
Abstract: Objective: The purpose of this study was to investigate the effects of a zinc-substituted nano-hydroxyapatite (Zn-HA) coating, applied by an electrochemical process, on implant osseointegraton in a rabbit model. Methods: A Zn-HA coating or an HA coating was deposited using an electrochemical process. Surface morphology was examined using field-emission scanning electron microscopy. The crystal structure and chemical composition of the coatings were examined using an X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). A total of 78 implants were inserted into femurs and tibias of rabbits. After two, four, and eight weeks, femurs and tibias were retrieved and prepared for histomorphometric evaluation and removal torque (RTQ) tests. Results: Rod-like HA crystals appeared on both implant surfaces. The dimensions of the Zn-HA crystals seemed to be smaller than those of HA. XRD patterns showed that the peaks of both coatings matched well with standard HA patterns. FTIR spectra showed that both coatings consisted of HA crystals. The Zn-HA coating significantly improved the bone area within all threads after four and eight weeks (P<0.05), the bone to implant contact (BIC) at four weeks (P<0.05), and RTQ values after four and eight weeks (P<0.05). Conclusions: The study showed that an electrochemically deposited Zn-HA coating has potential for improving bone integration with an implant surface.
[1]Alvarez, K., Fukuda, M., Yamamoto, O., 2010. Titanium implants after alkali heating treatment with a [Zn(OH)4]2− complex: analysis of interfacial bond strength using push-out tests. Clin. Implant Dent. Relat. Res., 12(s1):e114-e125.
[2]Angus, R.M., Sambrook, P.N., Pocock, N.A., Eisman, J.A., 1988. Dietary intake and bone mineral density. Bone Miner., 4(3):265-277.
[3]Barceloux, D.G., 1999. Zinc. Clin. Toxicol., 37(2):279-292.
[4]Davies, J.E., 1998. Mechanisms of endosseous integration. Int. J. Prosthodont., 11(5):391-401.
[5]Davies, J.E., 2000. Understanding peri-implant endosseous healing. J. Dent. Educ., 67(8):932-949.
[6]Ellies, L.G., Nelson, D.G., Featherstone, J.D., 1992. Crystallographic changes in calcium phosphates during plasma-spraying. Biomaterials, 13(5):313-316.
[7]Guo, X., Gough, J.E., Xiao, P., Liu, J., Shen, Z., 2007. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J. Biomed. Mater. Res. A, 82(4):1022-1032.
[8]Hall, S.L., Dimai, H.P., Farley, J.R., 1999. Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif. Tissue Int., 64(2):163-172.
[9]Hatakeyama, D., Kozawa, O., Otsuka, T., Shibata, T., Uematsu, T., 2002. Zinc suppresses IL-6 synthesis by prostaglandin F2α in osteoblasts: inhibition of phospholipase C and phospholipase D. J. Cell. Biochem., 85(3):621-628.
[10]He, F.M., Yang, G.L., Wang, X.X., Zhao, S.F., 2009. Effect of electrochemically deposited nano-hydroxyapatite on bone-bonding of sandblasted-dual acid etched titanium implant. Int. J. Oral Maxillofac. Implants, 24(5):790-799.
[11]Herman, H., 1988. Plasma spraydeposition processes. MRS Bull., 12:60-67.
[12]Herzberg, M., Foldes, J., Steinberg, R., Menczel, J., 1990. Zinc excretion in osteoporotic women. J. Bone Miner. Res., 5(3):251-257.
[13]Hosea, H.J., Taylor, C.G., Wood, T., Mollard, R., Weiler, H.A., 2004. Zinc-deficient rats have more limited bone recovery during repletion than diet-restricted rats. Exp. Biol. Med. (Maywood), 229(4):303-311.
[14]Kawamura, H., Ito, A., Muramatsu, T., Miyakawa, S., Ochiai, N., Tateishi, T., 2003. Long-term implantation of zinc-releasing calcium phosphate ceramics in rabbit femora. J. Biomed. Mater. Res. A, 65(4):468-474.
[15]Li, X., Sogo, Y., Ito, A., Mutsuzaki, H., Ochiai, N., Kobayashi, T., Nakamura, S., Yamashita, K., Legeros, R.Z., 2009. The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo. Mater. Sci. Eng. C Mater. Biol. Appl., 29(3):969-975.
[16]Meirelles, L., Albrektsson, T., Kjellin, P., Arvidsson, A., Franke, S.V., Andersson, M., Currie, F., Wennerberg, A., 2008. Bone reaction to nano hydroxyapatite modified titanium implants placed in a gap-healing model. J. Biomed. Mater. Res. A, 87(3):624-631.
[17]Miao, S.D., Lin, N., Cheng, K., Yang, D.S., Huang, X., Han, G.R., Weng, W.J., Ye, Z.M., 2011. Zn-releasing FHA coating and its enhanced osseointegration ability. J. Am. Ceram. Soc., 94(1):255-260.
[18]Nagata, M., Lonnerdal, B., 2011. Role of zinc in cellular zinc trafficking and mineralization in a murine osteoblast-like cell line. J. Nutr. Biochem., 22(2):172-178.
[19]Nkenke, E., Kloss, F., Wiltfang, J., Schultze-Mosgau, S., Radespiel-Tröger, M., Loos, K., Neukam, F.W., 2002. Histomorphometric and fluorescence microscopic analysis of bone remodelling after installation of implants using an osteotome technique. Clin. Oral Implants Res., 13(6):595-602.
[20]Ong, J.L., Chan, D.C., 2000. Hydroxyapatite and their use as coatings in dental implants: a review. Crit. Rev. Biomed. Eng., 28(5-6):667-707.
[21]Ong, J.L., Hoppe, C.A., Cardenas, H.L., Cavin, R., Carnes, D.L., Sogal, A., Raikar, G.N., 1998. Osteoblast precursor cell activity on HA surfaces of different treatments. J. Biomed. Mater. Res., 39(2):176-183.
[22]Palka, V., Postrkova, E., Koerten, H.K., 1998. Some characteristics of hydroxylapatite powders after plasma spraying. Biomaterials, 19(19):1763-1772.
[23]Porter, A.E., Patel, N., Skepper, J.N., Best, S.M., Bonfield, W., 2004. Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone-implant interface. Biomaterials, 25(16):3303-3314.
[24]Rossi, L., Migliaccio, S., Corsi, A., Marzia, M., Bianco, P., Teti, A., Gambelli, L., Cianfarani, S., Paoletti, F., Branca, F., 2001. Reduced growth and skeletal changes in zinc-deficient growing rats are due to impaired growth plate activity and inanition. J. Nutr., 131(4):1142-1146.
[25]Sato, M., Alslani, A., Sambito, M.A., Kalkhoran, N.M., Slamovich, E.B., Webster, T.J., 2008. Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. J. Biomed. Mater. Res. A, 84(1):265-272.
[26]Schenk, R.K., Buser, D., 1998. Osseointegration: a reality. Periodontol. 2000, 17(1):22-35.
[27]Suh, J.Y., Jeung, O.C., Choi, B.J., Park, J.W., 2007. Effects of a novel calcium titanate coating on the osseointegration of blasted endosseous implants in rabbit tibias. Clin. Oral Implants Res., 18(3):362-369.
[28]Szmukler-Moncler, S., Perrin, D., Ahossi, V., Magnin, G., Bernard, J.P., 2004. Biological properties of acid etched titanium implants: effect of sandblasting on bone anchorage. J. Biomed. Mater. Res. Part B: Appl. Biomater., 68(2):149-159.
[29]Yang, F., Dong, W.J., He, F.M., De, X.X., Zhao, S.F., Yang, G.L., 2012. Osteoblast response to porous titanium surfaces coated with zinc-substituted hydroxyapatite. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 113(3):313-318.
[30]Yang, G.L., He, F.M., Zhao, S.S., Zhao, S.F., 2008. Effect of H2O2/HCl heat treatment of implants on in vivo peri-implant bone formation. Int. J. Oral Maxillofac. Implants, 23(6):1020-1028.
[31]Yang, G.L., He, F.M., Hu, J.A., Wang, X.X., Zhao, S.F., 2009a. Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 107(6):782-789.
[32]Yang, G.L., He, F.M., Yang, X.F., Wang, X.X., Zhao, S.F., 2009b. In vivo evaluation of bone-bonding ability of RGD-coated porous implant using layer-by-layer electrostatic self-assembly. J. Biomed. Mater. Res. A, 90(1):175-185.
[33]Yang, G.L., He, F.M., Hu, J.A., Zhao, S.F., 2010a. Biomechanical comparison of biomimetically and electrochemically deposited hydroxyapatite coated porous titanium implants. J. Oral Maxillofac. Surg., 68(2):420-427.
[34]Yang, G.L., He, F.M., Song, E., Wang, X.X., Zhao, S.F., 2010b. In vivo evaluation of bone formation on roughened titanium implant surfaces with biomimetic and electrochemically deposited nano-hydroxyapatite. Int. J. Oral Maxillofac. Implants, 25(4):669-680.
Open peer comments: Debate/Discuss/Question/Opinion
<1>