Full Text:   <5427>

Summary:  <2361>

CLC number: X173

On-line Access: 2014-09-18

Received: 2014-04-18

Revision Accepted: 2014-09-17

Crosschecked: 2015-01-07

Cited: 11

Clicked: 7961

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Dan Liu

http://orcid.org/0000-0003-1102-6639

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.2 P.123-130

http://doi.org/10.1631/jzus.B1400107


Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation


Author(s):  Dan LIU, Song LI, Ejazul ISLAM, Jun-ren CHEN, Jia-sen WU, Zheng-qian YE, Dan-li PENG, Wen-bo YAN, Kou-ping LU

Affiliation(s):  Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Linan 311300, China; more

Corresponding email(s):   liudan7812@aliyun.com

Key Words:  Moso bamboo, Pb, Phytoremediation, Scanning electron microscopy, Transmission electron microscopy


Dan LIU, Song LI, Ejazul ISLAM, Jun-ren CHEN, Jia-sen WU, Zheng-qian YE, Dan-li PENG, Wen-bo YAN, Kou-ping LU. Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation[J]. Journal of Zhejiang University Science B, 2015, 16(2): 123-130.

@article{title="Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation",
author="Dan LIU, Song LI, Ejazul ISLAM, Jun-ren CHEN, Jia-sen WU, Zheng-qian YE, Dan-li PENG, Wen-bo YAN, Kou-ping LU",
journal="Journal of Zhejiang University Science B",
volume="16",
number="2",
pages="123-130",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400107"
}

%0 Journal Article
%T Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation
%A Dan LIU
%A Song LI
%A Ejazul ISLAM
%A Jun-ren CHEN
%A Jia-sen WU
%A Zheng-qian YE
%A Dan-li PENG
%A Wen-bo YAN
%A Kou-ping LU
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 2
%P 123-130
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400107

TY - JOUR
T1 - Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation
A1 - Dan LIU
A1 - Song LI
A1 - Ejazul ISLAM
A1 - Jun-ren CHEN
A1 - Jia-sen WU
A1 - Zheng-qian YE
A1 - Dan-li PENG
A1 - Wen-bo YAN
A1 - Kou-ping LU
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 2
SP - 123
EP - 130
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400107


Abstract: 
A hydroponics experiment was aimed at identifying the lead (pb) tolerance and phytoremediation potential of moso bamboo (Phyllostachys pubescens) seedlings grown under different pb treatments. Experimental results indicated that at the highest pb concentration (400 μmol/L), the growth of bamboo seedlings was inhibited and pb concentrations in leaves, stems, and roots reached the maximum of 148.8, 482.2, and 4282.8 mg/kg, respectively. scanning electron microscopy revealed that the excessive pb caused decreased stomatal opening, formation of abundant inclusions in roots, and just a few inclusions in stems. The ultrastructural analysis using transmission electron microscopy revealed that the addition of excessive pb caused abnormally shaped chloroplasts, disappearance of endoplasmic reticulum, shrinkage of nucleus and nucleolus, and loss of thylakoid membranes. Although ultrastructural analysis revealed some internal damage, even the plants exposed to 400 µmol/L pb survived and no visual pb toxicity symptoms such as necrosis and chlorosis were observed in these plants. Even at the highest pb treatment, no significant difference was observed for the dry weight of stem compared with controls. It is suggested that use of moso bamboo as an experimental material provides a new perspective for remediation of heavy metal contaminated soil owing to its high metal tolerance and greater biomass.

植物修复的应用:毛竹苗对铅的积累与耐性研究

目的:探索毛竹在修复铅污染土壤的植物修复潜力。
创新点:使用了毛竹作为一种全新的植物修复材料进行研究。得到了毛竹幼苗在铅胁迫下的生长与生理反应情况,不同植物组织对铅的吸收与积累情况,铅胁迫下毛竹幼苗表层与细胞超微结构的特征。
方法:根系形态分析(图3)、植物重金属含量分析 (表1)、扫描电镜分析(图4)和透射电镜分析(图5)。
结论:各组织部位铅浓度的值揭示了,毛竹是一个很好的固定铅污染土壤的植物材料;但是由于毛竹茎的高生物量,也可以作为铅污染土壤的植物修复材料。在0~200μmol/L铅处理下,毛竹的生物量与根系形态没有显著性差异,生长正常未出现中毒症状。通过扫描电镜观察铅胁迫导致叶片的气孔减少,根与茎内含物增多。通过透射电镜观察高浓度的铅胁迫导致部分细胞内部叶绿体变形、内质网消失、细胞核与核仁缩小和类囊体膜消失。尽管超微结构观察到细胞内部的损害,但是未出现视觉的毒性症状。毛竹铅的高耐性与茎的高生物量,提供了毛竹作为材料修复土壤重金属铅更大的可能性。

关键词:毛竹;植物修复;铅;扫描电镜;透射电镜

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]An, Y.J., Kim, Y.M., Kwon, T.I., et al., 2004. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci. Total Environ., 326(1-3):85-93.

[2]Audet, P., Charest, C., 2007. Heavy metal phytoremediation from a meta-analytical perspective. Environ. Pollut., 147(1):231-237.

[3]Chen, H., Hong, W., Wei, L., et al., 1998. Study on biomass and productivity of Phyllostachys heterocycala cv. Pubescens forest in the north of Fujian. Sci. Silvae Sin., 34(S1):60-64 (in Chinese).

[4]Chen, X.G., Zhang, X.Q., Zhang, Y.P., et al., 2009. Changes of carbon stocks in bamboo stands in China during 100 years. Forest Ecol. Manag., 258(7):1489-1496.

[5]Cho-Ruk, K., Kurukote, J., Supprung, P., 2006. Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology, 5(1):1-4.

[6]Cobbett, C.S., 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol., 123(3):825-832.

[7]Dos Santos Utmazian, M.N., Wieshammer, G., Vega, R., et al., 2007. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ. Pollut., 148(1):155-165.

[8]Epelde, L., Hernández-Allica, J., Becerril, J.M., et al., 2008. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Sci. Total Environ., 401(1-3):21-28.

[9]Fan, K.C., Hsi, H.C., Chen, C.W., et al., 2011. Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. J. Environ. Manag., 92(10):2818-2822.

[10]Hall, J.L., 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot., 53(366):1-11.

[11]He, B., Yang, X.E., Ni, W.Z., et al., 2001. Sedum alfredii: a new lead-accumulating ecotype. Acta Bot. Sin., 44(11):1365-1370 (in Chinese).

[12]Islam, E., Yang, X.E., Li, T.Q., et al., 2007. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J. Hazard. Mater., 147(3):806-816.

[13]Krämer, U., 2010. Metal hyperaccumulation in plants. Annu. Rev. Plant Biol., 61(1):517-534.

[14]Li, S.L., Wang, F.P., Ru, M., et al., 2014. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site—a hydroponics experiment. Int. J. Phytoremediat., 16(12):1257-1267.

[15]López-Millán, A.F., Sagardoy, R., Solanas, M., et al., 2009. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ. Exp. Bot., 65(2-3):376-385.

[16]Macnair, M.R., 1993. The genetics of metal tolerance in vascular plants. New Phytol., 124(4):541-559.

[17]Nada, E., Ferjani, B.A., Ali, R., et al., 2007. Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol. Plant., 29(1):57-62.

[18]Patra, M., Bhowmik, N., Bandopadhyay, B., et al., 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Exp. Bot., 52(3):199-223.

[19]Piechalak, A., Tomaszewska, B., Baralkiewicz, D., et al., 2002. Accumulation and detoxification of lead ions in legumes. Phytochemistry, 60(2):153-162.

[20]Pulford, I., Watson, C., 2003. Phytoremediation of heavy metal-contaminated land by trees—a review. Environ. Int., 29(4):529-540.

[21]Rascio, N., Navari-Izzo, F., 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci., 180(2):169-181.

[22]Rudakova, E.V., Karakis, K.D., Sidorshina, E.T., 1988. The role of plant cell walls in uptake and accumulation of metal ions. Fiziol. Biochim. Kult. Rast., 20(1):3-12.

[23]Ruley, A.T., Sharma, N.C., Sahi, S.V., et al., 2006. Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Environ. Pollut., 144(1):11-18.

[24]Shao, J.F., Gui, R.Y., Ji, H.B., et al., 2011. A preliminary study on establishment of hydroponic culture system for Phyllostachys pubescens seedlings. J. Zhejiang A & F Univ., 28(1):86-94 (in Chinese).

[25]Sharma, P., Dubey, R.S., 2005. Lead toxicity in plants. Braz. J. Plant Physiol., 17(1):35-52.

[26]Singh, R.P., Tripathi, R.D., Sinha, S., et al., 1997. Response of higher plants to lead contaminated environment. Chemosphere, 34(11):2467-2493.

[27]Sinha, S., Gupta, A.K., Bhatt, K., 2007. Uptake and translocation of metals in fenugreek grown on soil amended with tannery sludge: involvement of antioxidants. Ecotoxicol. Environ. Saf., 67(2):267-277.

[28]Tandy, S., Schulin, R., Nowack, B., 2006. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 62(9):1454-1463.

[29]Verbruggen, N., Hermans, C., Schat, H., 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol., 181(4):759-776.

[30]Wang, B., Wei, W.J., Liu, C.J., et al., 2013. Biomass and carbon stock in Moso bamboo forests in subtropical China: characteristics and implications. J. Trop. For. Sci., 25(1):137-148 (in Malay).

[31]Wu, J.S., Yu, Y.W., Zhu, Z., et al., 2002. Studies on the biomass of different forests in Huzhou city. J. Jiangsu Forest. Sci. Technol., 29(4):22-24 (in Chinese).

[32]Xi, X.Y., Liu, M.Y., Huang, Y., et al., 2010. Response of flue-cured tobacco plants to different concentration of lead or cadmium. 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, p.1-4.

[33]Xu, Y., Wong, M., Yang, J., et al., 2011. Dynamics of carbon accumulation during the fast growth period of bamboo plant. Bot. Rev., 77(3):287-295.

[34]Zaier, H., Ghnaya, T., Lakhdar, A., et al., 2010. Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J. Hazard. Mater., 183(1-3):609-615.

[35]Zhang, L., Ye, Z.Q., Li, T.Q., et al., 2006. Studies on soil microbial activity in areas contaminated by tailings from Pb, Zn mine. J. Soil Water Conserv., 20(3):136-140 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE