Full Text:   <4397>

Summary:  <2140>

CLC number: R737.9

On-line Access: 2015-01-05

Received: 2014-07-03

Revision Accepted: 2014-12-02

Crosschecked: 2014-12-19

Cited: 25

Clicked: 7224

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yun-ping LUO

http://orcid.org/0000-0001-6905-0768

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.1 P.18-31

http://doi.org/10.1631/jzus.B1400184


MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential


Author(s):  Wei Wang, Yun-ping Luo

Affiliation(s):  Department of Immunology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China

Corresponding email(s):   yunpingluo@hotmail.com

Key Words:  Breast cancer, MicroRNA, Oncogene, Tumor suppressors, Diagnosis marker, MicroRNA-based therapy


Wei Wang, Yun-ping Luo. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential[J]. Journal of Zhejiang University Science B, 2015, 16(1): 18-31.

@article{title="MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential",
author="Wei Wang, Yun-ping Luo",
journal="Journal of Zhejiang University Science B",
volume="16",
number="1",
pages="18-31",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400184"
}

%0 Journal Article
%T MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential
%A Wei Wang
%A Yun-ping Luo
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 1
%P 18-31
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400184

TY - JOUR
T1 - MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential
A1 - Wei Wang
A1 - Yun-ping Luo
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 1
SP - 18
EP - 31
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400184


Abstract: 
microRNAs (miRs) are small single-stranded RNA molecules, which function as key negative regulators of post-transcriptional modulation in almost all biological processes. Abnormal expression of microRNAs has been observed in various types of cancer including breast cancer. Great efforts have been made to identify an association between microRNA expression profiles and breast cancer, and to understand the functional role and molecular mechanism of aberrant-expressed microRNAs. As research progressed, ‘oncogenic microRNAs’ and ‘tumor suppressive microRNAs’ became a focus of interest. The potential of candidate microRNAs from both intercellular (tissue) and extracellular (serum) sources for clinical diagnosis and prognosis was revealed, and treatments involving microRNA achieved some amazing curative effects in cancer disease models. In this review, advances from the most recent studies of microRNAs in one of the most common cancers, breast cancer, are highlighted, especially the functions of specifically selected microRNAs. We also assess the potential value of these microRNAs as diagnostic and prognostic markers, and discuss the possible development of microRNA-based therapies.

The topic of this review manuscript is very important as the microRNA is an emerging drug targets for cancer. The author also did a very good job collecting all the related information.

MicroRNA在乳腺癌发展过程中的作用机制及临床应用分析

概要:搜集已报道的在乳腺癌发生发展过程中有重要作用的microRNA信息,结合相关肿瘤模型的实验数据,评估microRNA在乳腺癌诊断和治疗方面的应用前景。以"癌基因"和"癌抑制基因"为分类依据,全面地总结归纳乳腺癌相关microRNA的功能和作用机制,进一步从临床诊断标记物和治疗靶点的层面分析microRNA的潜在临床应用价值。表1和2总结了microRNA参与乳腺癌发展过程的具体事件及其调控的靶基因。同时,本文还深入探讨microRNA作为临床诊断标记物及治疗靶点的可行性,揭示已有研究的不足之处,为今后的相关工作方向提供一些建议。

关键词:MicroRNA;乳腺癌;癌基因;抑癌基因;诊断标记物;治疗靶点

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmad, A., Aboukameel, A., Kong, D.J., et al., 2011. Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res., 71(9):3400-3409.

[2]Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., et al., 2003. Prospective identification of tumorigenic breast cancer cells. PNAS, 100(7):3983-3988.

[3]Andorfer, C.A., Necela, B.M., Thompson, E.A., et al., 2011. MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol. Med., 17(6):313-319.

[4]Asaga, S., Kuo, C., Nguyen, T., et al., 2011. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin. Chem., 57(1):84-91.

[5]Barh, D., Malhotra, R., Ravi, B., et al., 2010. MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr. Oncol., 17(1):70-80.

[6]Bartel, D.P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281-297.

[7]Bertucci, F., Finetti, P., Rougemont, J., et al., 2005. Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res., 65(6):2170-2178.

[8]Bhaumik, D., Scott, G.K., Schokrpur, S., et al., 2008. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 27(42):5643-5647.

[9]Blenkiron, C., Goldstein, L.D., Thorne, N.P., et al., 2007. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol., 8(10):R214.

[10]Bockhorn, J., Yee, K., Chang, Y.F., et al., 2013. MicroRNA-30c targets cytoskeleton genes involved in breast cancer cell invasion. Breast Cancer Res. Treat., 137(2):373-382.

[11]Brabletz, T., Jung, A., Spaderna, S., et al., 2005. Migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat. Rev. Cancer, 5(9):744-749.

[12]Brognara, E., Fabbri, E., Aimi, F., et al., 2012. Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. Int. J. Mol. Med., 30:S59.

[13]Buffa, F.M., Camps, C., Winchester, L., et al., 2011. MicroRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res., 71(17):5635-5645.

[14]Cai, J.C., Guan, H.Y., Fang, L.S., et al., 2013. MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis. J. Clin. Invest., 123(2):566-579.

[15]Calin, G.A., Croce, C.M., 2006. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 6(11):857-866.

[16]Cascio, S., D'Andrea, A., Ferla, R., et al., 2010. miR-20b modulates VEGF expression by targeting HIF-1α and STAT3 in MCF-7 breast cancer cells. J. Cell Physiol., 224(1):242-249.

[17]Cha, S.T., Chen, P.S., Johansson, G., et al., 2010. MicroRNA-519c suppresses hypoxia-inducible factor-1α expression and tumor angiogenesis. Cancer Res., 70(7):2675-2685.

[18]Chan, J.A., Krichevsky, A.M., Kosik, K.S., 2005. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res., 65(14):6029-6033.

[19]Chao, C.H., Chang, C.C., Wu, M.J., et al., 2014. MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J. Clin. Invest., 124(7):3093-3106.

[20]Chen, W.X., Hu, Q., Qiu, M.T., et al., 2013. miR-221/222: promising biomarkers for breast cancer. Tumor Biol., 34(3):1361-1370.

[21]Chen, X., Gao, C., Li, H.J., et al., 2010. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res., 20(10):1128-1137.

[22]Cheng, C.W., Wang, H.W., Chang, C.W., et al., 2012. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res. Treat., 134(3):1081-1093.

[23]Chiang, C.H., Hou, M.F., Hung, W.C., 2013. Up-regulation of miR-182 by β-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor RECK. BBA-Gen. Subjects, 1830(4):3067-3076.

[24]Cittelly, D.M., Das, P.M., Spoelstra, N.S., et al., 2010. Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol. Cancer, 9(1):317.

[25]Cookson, V.J., Bentley, M.A., Hogan, B.V., et al., 2012. Circulating microRNA profiles reflect the presence of breast tumours but not the profiles of microRNAs within the tumours. Cell. Oncol., 35(4):301-308.

[26]Croce, C.M., Calin, G.A., 2005. miRNAs, cancer, and stem cell division. Cell, 122(1):6-7.

[27]Cui, W.J., Zhang, S., Shan, C.L., et al., 2013. MicroRNA-133a regulates the cell cycle and proliferation of breast cancer cells by targeting epidermal growth factor receptor through the EGFR/Akt signaling pathway. FEBS J., 280(16):3962-3974.

[28]Cuk, K., Zucknick, M., Heil, J., et al., 2013. Circulating microRNAs in plasma as early detection markers for breast cancer. Int. J. Cancer, 132(7):1602-1612.

[29]de Souza Rocha Simonini, P., Breiling, A., Gupta, N., et al., 2010. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor α in breast cancer cells. Cancer Res., 70(22):9175-9184.

[30]Ding, X.M., Park, S.I., McCauley, L.K., et al., 2013. Signaling between transforming growth factor β (TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J. Biol. Chem., 288(15):10241-10253.

[31]Dykxhoorn, D.M., Palliser, D., Lieberman, J., 2006. The silent treatment: siRNAs as small molecule drugs. Gene Therapy, 13(6):541-552.

[32]Dykxhoorn, D.M., Wu, Y.C., Xie, H.M., et al., 2009. miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS ONE, 4(9):e7181.

[33]Eades, G., Yao, Y., Yang, M.H., et al., 2011. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J. Biol. Chem., 286(29):25992-26002.

[34]Ebert, M.S., Neilson, J.R., Sharp, P.A., 2007. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods, 4(9):721-726.

[35]Esquela-Kerscher, A., Trang, P., Wiggins, J.F., et al., 2008. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 7(6):759-764.

[36]Farazi, T.A., Horlings, H.M., ten Hoeve, J.J., et al., 2011. MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res., 71(13):4443-4453.

[37]Frankel, L.B., Christoffersen, N.R., Jacobsen, A., et al., 2008. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem., 283(2):1026-1033.

[38]Gao, J., Li, L.S., Wu, M.Q., et al., 2013. miR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS ONE, 8(6):e65138.

[39]Gilad, S., Meiri, E., Yogev, Y., et al., 2008. Serum microRNAs are promising novel biomarkers. PLoS ONE, 3(9):e3148.

[40]Goldberger, N., Walker, R.C., Kim, C.H., et al., 2013. Inherited variation in miR-290 expression suppresses breast cancer progression by targeting the metastasis susceptibility gene Arid4b. Cancer Res., 73(8):2671-2681.

[41]Gregory, P.A., Bracken, C.P., Bert, A.G., et al., 2008. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle, 7(20):3112-3118.

[42]Gumireddy, K., Young, D.D., Xiong, X., et al., 2008. Small-molecule inhibitors of microRNA miR-21 function. Angew. Chem. Int. Ed., 47(39):7482-7484.

[43]Guttilla, I.K., White, B.A., 2009. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J. Biol. Chem., 284(35):23204-23216.

[44]Hanke, M., Hoefig, K., Merz, H., et al., 2010. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol.-Semin. Orig. Invest., 28(6):655-661.

[45]Haque, I., Banerjee, S., Mehta, S., et al., 2011. Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5 (CCN5)/Wnt-1-induced signaling protein-2 (WISP-2) regulates microRNA-10b via hypoxia-inducible factor-1α-TWIST signaling networks in human breast cancer cells. J. Biol. Chem., 286(50):43475-43485.

[46]He, T., Qi, F.F., Jia, L., et al., 2014. MicroRNA-542-3p inhibits tumour angiogenesis by targeting angiopoietin-2. J. Pathol., 232(5):499-508.

[47]Heneghan, H.M., Miller, N., Kerin, M.J., 2010. Circulating miRNA signatures: promising prognostic tools for cancer. J. Clin. Oncol., 28(29):e573-e574.

[48]Hermeking, H., 2012. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat. Rev. Cancer, 12(9):613-626.

[49]Heyn, H., Engelmann, M., Schreek, S., et al., 2011. MicroRNA miR-335 is crucial for the BRCA1 regulatory cascade in breast cancer development. Int. J. Cancer, 129(12):2797-2806.

[50]Hu, J.J., Guo, H., Li, H.Y., et al., 2012. miR-145 regulates epithelial to mesenchymal transition of breast cancer cells by targeting OCT4. PLoS ONE, 7(9):e45965.

[51]Hu, X.W., Guo, J.Y., Zheng, L., et al., 2013. The heterochronic microRNA let-7 inhibits cell motility by regulating the genes in the actin cytoskeleton pathway in breast cancer. Mol. Cancer Res., 11(3):240-250.

[52]Huang, Q.H., Gumireddy, K., Schrier, M., et al., 2008. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol., 10(2):202-210.

[53]Hwang, M.S., Yu, N., Stinson, S.Y., et al., 2013. miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS ONE, 8(6):e66502.

[54]Iorio, M.V., Croce, C.M., 2009. MicroRNAs in cancer: small molecules with a huge impact. J. Clin. Oncol., 27(34):5848-5856.

[55]Iorio, M.V., Ferracin, M., Liu, C.G., et al., 2005. MicroRNA gene expression deregulation in human breast cancer. Cancer Res., 65(16):7065-7070.

[56]Iorio, M.V., Visone, R., Di Leva, G., et al., 2007. MicroRNA signatures in human ovarian cancer. Cancer Res., 67(18):8699-8707.

[57]Iorio, M.V., Casalini, P., Piovan, C., et al., 2009. MicroRNA-205 regulates HER3 in human breast cancer. Cancer Res., 69(6):2195-2200.

[58]Jansson, M.D., Lund, A.H., 2012. MicroRNA and cancer. Mol. Oncol., 6(6):590-610.

[59]Jiang, S.A., Zhang, H.W., Lu, M.H., et al., 2010. MicroRNA-155 functions as an oncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res., 70(8):3119-3127.

[60]Johnson, S.M., Lin, S.Y., Slack, F.J., 2003. The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev. Biol., 259(2):364-379.

[61]Karnoub, A.E., Dash, A.B., Vo, A.P., et al., 2007. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162):557-563.

[62]Kim, V.N., 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol., 6(5):376-385.

[63]Kong, W., He, L.L., Coppola, M., et al., 2010. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J. Biol. Chem., 285(23):17869-17879.

[64]Korner, C., Keklikoglou, I., Bender, C., et al., 2013. MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C ε (PKCε). J. Biol. Chem., 288(12):8750-8761.

[65]Korpal, M., Ell, B.J., Buffa, F.M., et al., 2011. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Med., 17(9):1101-1108.

[66]Kota, J., Chivukula, R.R., O'Donnell, K.A., et al., 2009. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137(6):1005-1017.

[67]Kreso, A., Dick, J.E., 2014. Evolution of the cancer stem cell model. Cell Stem Cell, 14(3):275-291.

[68]Krützfeldt, J., Rajewsky, N., Braich, R., et al., 2005. Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438(7068):685-689.

[69]Lagos-Quintana, M., Rauhut, R., Yalcin, A., et al., 2002. Identification of tissue-specific microRNAs from mouse. Curr. Biol., 12(9):735-739.

[70]Lee, R.C., Feinbaum, R.L., Ambros, V., 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5):843-854.

[71]Lei, R., Tang, J., Zhuang, X., et al., 2014. Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis. Oncogene, 33(10):1287-1296.

[72]Li, J., Zhang, Y., Zhang, W., et al., 2013. Genetic heterogeneity of breast cancer metastasis may be related to miR-21 regulation of TIMP-3 in translation. Int. J. Surg. Oncol., 2013:875078.

[73]Li, L.Z., Zhang, C.Z., Liu, L.L., et al., 2014. miR-720 inhibits tumor invasion and migration in breast cancer by targeting TWIST1. Carcinogenesis, 35(2):469-478.

[74]Li, Q.Y., Zhu, F.F., Chen, P.X., 2012. miR-7 and miR-218 epigenetically control tumor suppressor genes RASSF1A and Claudin-6 by targeting HoxB3 in breast cancer. Biochem. Biophys. Res. Commun., 424(1):28-33.

[75]Li, X., Roslan, S., Johnstone, C.N., et al., 2013. miR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene, 33(31):4077-4088.

[76]Liao, D., Liu, Z., Wrasidlo, W., et al., 2011. Synthetic enzyme inhibitor: a novel targeting ligand for nanotherapeutic drug delivery inhibiting tumor growth without systemic toxicity. Nanomed.-Nanotechnol., 7(6):665-673.

[77]Lim, Y.Y., Wright, J.A., Attema, J.L., et al., 2013. Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J. Cell Sci., 126(10):2256-2266.

[78]Liu, X.X., Li, X.J., Zhang, B., et al., 2011. MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett., 585(9):1363-1367.

[79]Liu, Y., Zhao, J., Zhang, P.Y., et al., 2012. MicroRNA-10b targets E-cadherin and modulates breast cancer metastasis. Med. Sci. Monitor, 18(8):Br299-Br308.

[80]Luo, Q.F., Li, X.Y., Gao, Y., et al., 2013. miRNA-497 regulates cell growth and invasion by targeting cyclin E1 in breast cancer. Cancer Cell Int., 13(1):95.

[81]Ma, L., Teruya-Feldstein, J., Weinberg, R.A., 2007. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163):682-688.

[82]Ma, L., Young, J., Prabhala, H., et al., 2010a. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol., 12(3):247-256.

[83]Ma, L., Reinhardt, F., Pan, E., et al., 2010b. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat. Biotechnol., 28(4):341-347.

[84]Mani, S.A., Guo, W., Liao, M.J., et al., 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4):704-715.

[85]Meister, G., Landthaler, M., Dorsett, Y., et al., 2004. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA, 10(3):544-550.

[86]Melo, S.A., Esteller, M., 2011. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett., 585(13):2087-2099.

[87]Meng, F.Y., Henson, R., Lang, M., et al., 2006. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology, 130(7):2113-2129.

[88]Meng, F.Y., Henson, R., Wehbe-Janek, H., et al., 2007. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133(2):647-658.

[89]Mertens-Talcott, S.U., Chintharlapalli, S., Li, M.R., et al., 2007. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res., 67(22):11001-11011.

[90]Mitchell, P.S., Parkin, R.K., Kroh, E.M., et al., 2008. Circulating microRNAs as stable blood-based markers for cancer detection. PNAS, 105(30):10513-10518.

[91]Mitra, A., Rostas, J.W., Dyess, D.L., et al., 2012. Micro-RNA-632 downregulates DNAJB6 in breast cancer. Lab. Invest., 92(9):1310-1317.

[92]Moriarty, C.H., Pursell, B., Mercurio, A.M., 2010. miR-10b targets Tiam1 implications for Rac activation and carcinoma migration. J. Biol. Chem., 285(27):20541-20546.

[93]Mukhtar, R.A., Nseyo, O., Campbell, M.J., et al., 2011. Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert. Rev. Mol. Diagn., 11(1):91-100.

[94]Nassirpour, R., Mehta, P.P., Baxi, S.M., et al., 2013. miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS ONE, 8(4):e62170.

[95]Ng, E.K.O., Li, R.F.N., Shin, V.Y., et al., 2013. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS ONE, 8(1):e53141.

[96]Nguyen, D.P., Li, J., Yadav, S.S., et al., 2014. Recent insights into NF-κB signalling pathways and the link between inflammation and prostate cancer. BJU Int., 114(2):168-176.

[97]Nimmo, R.A., Slack, F.J., 2009. An elegant mirror: microRNAs in stem cells, developmental timing and cancer. Chromosoma, 118(4):405-418.

[98]O’Hara, S.P., Mott, J.L., Splinter, P.L., et al., 2009. MicroRNAs: key modulators of posttranscriptional gene expression. Gastroenterology, 136(1):17-25.

[99]Okuda, H., Xing, F., Pandey, P.R., et al., 2013. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res., 73(4):1434-1444.

[100]Ørom, U.A., Kauppinen, S., Lund, A.H., 2006. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene, 372:137-141.

[101]Ovcharenko, D., Kelnar, K., Johnson, C., et al., 2007. Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res., 67(22):10782-10788.

[102]Park, N.J., Zhou, H., Elashoff, D., et al., 2009. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res., 15(17):5473-5477.

[103]Png, K.J., Yoshida, M., Zhang, X.H.F., et al., 2011. MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev., 25(3):226-231.

[104]Png, K.J., Halberg, N., Yoshida, M., et al., 2012. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481(7380):190-194.

[105]Qi, J., Wang, J., Katayama, H., et al., 2013. Circulating microRNAs (cmiRNAs) as novel potential biomarkers for hepatocellular carcinoma. Neoplasma, 60(2):135-142.

[106]Radojicic, J., Zaravinos, A., Vrekoussis, T., et al., 2011. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle, 10(3):507-517.

[107]Rivas, M.A., Venturutti, L., Huang, Y.W., et al., 2012. Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development. Breast Cancer Res., 14(3):R77.

[108]Rubin, R., Arzumanyan, A., Soliera, A.R., et al., 2007. Insulin receptor substrate (IRS)-1 regulates murine embryonic stem (mES) cells self-renewal. J. Cell. Physiol., 213(2):445-453.

[109]Sachdeva, M., Mo, Y.Y., 2010. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res., 70(1):378-387.

[110]Schee, K., Boye, K., Abrahamsen, T.W., et al., 2012. Clinical relevance of microRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 in colorectal cancer. BMC Cancer, 12(1):505.

[111]Scheel, C., Eaton, E.N., Li, S.H.J., et al., 2011. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell, 145(6):926-940.

[112]Shipitsin, M., Polyak, K., 2008. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab. Invest., 88(5):459-463.

[113]Si, M.L., Zhu, S., Wu, H., et al., 2007. miR-21-mediated tumor growth. Oncogene, 26(19):2799-2803.

[114]Sica, A., Larghi, P., Mancino, A., et al., 2008. Macrophage polarization in tumour progression. Semin. Cancer Biol., 18(5):349-355.

[115]Smith, A.L., Iwanaga, R., Drasin, D.J., et al., 2012. The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene, 31(50):5162-5171.

[116]Song, S.J., Poliseno, L., Song, M.S., et al., 2013. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell, 154(2):311-324.

[117]Sorlie, T., Perou, C.M., Tibshirani, R., et al., 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. PNAS, 98(19):10869-10874.

[118]Sossey-Alaoui, K., Downs-Kelly, E., Das, M., et al., 2011. WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. Int. J. Cancer, 129(6):1331-1343.

[119]Spizzo, R., Nicoloso, M.S., Lupini, L., et al., 2010. miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-α in human breast cancer cells. Cell Death Differ., 17(2):246-254.

[120]Stinson, S., Lackner, M.R., Adai, A.T., et al., 2011. miR-221/ 222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci. Signal., 4(186):pt5.

[121]Sun, X., Fan, C., Hu, L.J., et al., 2012. Role of let-7 in maintaining characteristics of breast cancer stem cells. Chin. J. Cell. Mol. Immunol., 28(8):789-792 (in Chinese).

[122]Tang, W., Yu, F., Yao, H., et al., 2014. miR-27a regulates endothelial differentiation of breast cancer stem like cells. Oncogene, 33(20):2629-2638.

[123]Tanic, M., Yanowsky, K., Rodriguez-Antona, C., et al., 2012. Deregulated miRNAs in hereditary breast cancer revealed a role for miR-30c in regulating KRAS oncogene. PLoS ONE, 7(6):e38847.

[124]Tanzer, A., Stadler, P.F., 2004. Molecular evolution of a microRNA cluster. J. Mol. Biol., 339(2):327-335.

[125]Tavazoie, S.F., Alarcon, C., Oskarsson, T., et al., 2008. Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175):147-152.

[126]Taylor, M.A., Sossey-Alaoui, K., Thompson, C.L., et al., 2013. TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J. Clin. Invest., 123(1):150-163.

[127]Tsuchiya, Y., Nakajima, M., Takagi, S., et al., 2006. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res., 66(18):9090-9098.

[128]Valastyan, S., Chang, A., Benaich, N., et al., 2011. Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes Dev., 25(6):646-659.

[129]Valent, P., Bonnet, D., de Maria, R., et al., 2012. Cancer stem cell definitions and terminology: the devil is in the details. Nat. Rev. Cancer, 12(11):767-775.

[130]Wang, B., Zhang, Q.Y., 2012. The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J. Cancer Res. Clin. Oncol., 138(10):1659-1666.

[131]Wang, F.J., Zheng, Z.G., Guo, J.F., et al., 2010. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol. Oncol., 119(3):586-593.

[132]Wang, S., Huang, J., Lyu, H., et al., 2013. Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death Dis., 4(3):e556.

[133]Wang, S.H., Bian, C.J., Yang, Z., et al., 2009. miR-145 inhibits breast cancer cell growth through RTKN. Int. J. Oncol., 34(5):1461-1466.

[134]Weidhaas, J.B., Babar, L., Nallur, S.M., et al., 2007. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res., 67(23):11111-11116.

[135]Wu, H.L., Zhu, S.M., Mo, Y.Y., 2009. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res., 19(4):439-448.

[136]Xu, Q., Jiang, Y., Yin, Y., et al., 2013. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J. Mol. Cell Biol., 5(1):3-13.

[137]Yanaihara, N., Caplen, N., Bowman, E., et al., 2006. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9(3):189-198.

[138]Yang, J., Zhang, Z., Chen, C., et al., 2014. MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through down-regulated expression of Fra-1 proto-oncogene. Oncogene, 33(23):3014-3023.

[139]Yu, F., Yao, H., Zhu, P.C., et al., 2007. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6):1109-1123.

[140]Yu, F., Deng, H., Yao, H., et al., 2010. miR-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene, 29(29):4194-4204.

[141]Yu, Z.R., Wang, C.G., Wang, M., et al., 2008. A Cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J. Cell Biol., 182(3):509-517.

[142]Zhang, C.M., Zhao, J., Deng, H.Y., 2013. miR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J. Biomed. Sci., 20(1):79.

[143]Zhou, J., Tian, Y., Li, J., et al., 2013. miR-206 is down-regulated in breast cancer and inhibits cell proliferation through the up-regulation of cyclinD2. Biochem. Biophys. Res. Commun., 433(2):207-212.

[144]Zhu, S., Sachdeva, M., Wu, F., et al., 2010. Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene, 29(12):1763-1772.

[145]Zhu, S.M., Si, M.L., Wu, H.L., et al., 2007. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem., 282(19):14328-14336.

[146]Zoon, C.K., Starker, E.Q., Wilson, A.M., et al., 2009. Current molecular diagnostics of breast cancer and the potential incorporation of microRNA. Expert Rev. Mol. Diagn., 9(5):455-467.

[147]Zou, C., Xu, Q., Mao, F., et al., 2012. miR-145 inhibits tumor angiogenesis and growth by N-RAS and VEGF. Cell Cycle, 11(11):2137-2145.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Ava Kwong@The Univeristy of Hong Kong<avakwong@hku.hk>

2015-02-18 13:48:22

MicroRNAs play various role in the biological processes and cancer development. Vast numbers of miRNAs were found to be associated with breast cancer which maybe the potential target for therapeutic therapy to treat the disease. Our group has also been working on the diagnostic value of miRNAs in the ciculation of breast cancer patients. It would be important to delineate the cellular signaling pathway regulating the expression of these miRNAs in breast cancer for the development of targeted therapty against this disease.

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE