Full Text:   <1681>

Summary:  <1090>

CLC number: TS252.5

On-line Access: 2016-08-04

Received: 2015-10-13

Revision Accepted: 2016-01-11

Crosschecked: 2016-07-18

Cited: 2

Clicked: 3402

Citations:  Bibtex RefMan EndNote GB/T7714


Xiao-dong Zheng


Wen-wen Zhou


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.8 P.597-609


Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese

Author(s):  Ramila Azat, Yan Liu, Wei Li, Abdurihim Kayir, Ding-bo Lin, Wen-wen Zhou, Xiao-dong Zheng

Affiliation(s):  College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   vivianzhou11@zju.edu.cn, xdzheng@zju.edu.cn

Key Words:  Xinjiang cheese, Lactic acid bacterial (LAB) strains, Probiotic properties, Caenorhabditis elegans, Lifespan

Ramila Azat, Yan Liu, Wei Li, Abdurihim Kayir, Ding-bo Lin, Wen-wen Zhou, Xiao-dong Zheng. Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese[J]. Journal of Zhejiang University Science B, 2016, 17(8): 597-609.

@article{title="Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese",
author="Ramila Azat, Yan Liu, Wei Li, Abdurihim Kayir, Ding-bo Lin, Wen-wen Zhou, Xiao-dong Zheng",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese
%A Ramila Azat
%A Yan Liu
%A Wei Li
%A Abdurihim Kayir
%A Ding-bo Lin
%A Wen-wen Zhou
%A Xiao-dong Zheng
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 8
%P 597-609
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500250

T1 - Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese
A1 - Ramila Azat
A1 - Yan Liu
A1 - Wei Li
A1 - Abdurihim Kayir
A1 - Ding-bo Lin
A1 - Wen-wen Zhou
A1 - Xiao-dong Zheng
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 8
SP - 597
EP - 609
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500250

Six lactic acid bacterial (LAB) strains were isolated from traditionally fermented xinjiang cheese and evaluated for functional and probiotic properties and potentials as starter cultures. The isolated six LAB strains comprised Lactobacillus rhamnosus (one strain), Lactobacillus helveticus (one strain), and Enterococcus hirae (four strains). All of the six strains were tolerant to acidic and bile salt conditions. Among which, the L. rhamnosus R4 strain showed more desirable antimicrobial, auto-aggregation, and hydrophobic activity. In addition, the strain L. rhamnosus R4 exhibited the highest level of free radical scavenging activity (53.78% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals and 45.79% of hydroxyl radicals). L. rhamnosus R4 also demonstrated cholesterol and triglyceride degradation by 50.97% and 28.92%, respectively. To further examine the health-promoting effects of these LAB strains on host lifespan, Caenorhabditis elegans was used as an in vivo model. Worms fed LAB as a food source had significant differences in lifespan compared to those fed Escherichia coli OP50 (as a negative control). Feeding of L. rhamnosus R4 extended the mean lifespan of C. elegans by up to 36.1% compared to that of the control. The results suggest that the strains isolated from Xinjiang fermented dairy products have high potential as starter cultures in the cheese industry.


方法:对分离自传统发酵乳制品中的乳酸菌进行生理生化分析和16S rDNA分子生物学鉴定,筛选出6株乳酸菌,并测定其耐酸、耐胆盐、抑菌、亲水性和共聚集能力;测定其抗氧化、降解胆固醇和甘油三酯的能力;测定乳酸菌对秀丽线虫寿命的影响。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Alegria, A., Szczesny, P., Mayo, B., et al., 2012. Biodiversity in Oscypek, a traditional Polish cheese, determined by culture-dependent and -independent approaches. Appl. Environ. Microbiol., 78(6):1890-1898.

[2]Amadou, I., Le, G.W., Shi, Y.H., 2013. Evaluation of antimicrobial, antioxidant activities, and nutritional values of fermented foxtail millet extracts by Lactobacillus paracasei Fn032. Int. J. Food Prop., 16(6):1179-1190.

[3]Amenu, D., 2013. Antimicrobial activity of lactic acid bacteria isolated from “Ergo”, Ethiopian traditional fermented milk. Curr. Res. Microbiol. Biotechnol., 1(6):278-284.

[4]Collado, M.C., Meriluoto, J., Salminen, S., 2008. Adhesion and aggregation properties of probiotic and pathogen strains. Eur. Food Res. Technol., 226(5):1065-1073.

[5]Dunne, C., O'Mahony, L., Murphy, L., et al., 2001. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am. J. Clin. Nutr., 73(2 Suppl.):386S-392S.

[6]Feng, H.W., Pi, C.M., Wang, R.B., et al., 1973. Use of ferric ammonium sulfate in serum cholesterol determination. Clin. Chem., 19(1):121-122.

[7]Ferreira, V., Barbosa, J., Silva, J., et al., 2007. Chemical and microbiological characterisation of “Salpicao de vinhais” and “Chourica de vinhais”: traditional dry sausages produced in the North of Portugal. Food Microbiol., 24(6):618-623.

[8]Fguiri, I., Ziadi, M., Atigui, M., et al., 2015. Isolation and characterisation of lactic acid bacteria strains from raw camel milk for potential use in the production of fermented Tunisian dairy products. Int. J. Dairy Technol., 69(1):103-113.

[9]Fons, M., Gomez, A., Karjalainen, T., 2000. Mechanisms of colonisation and colonisation resistance of the digestive tract part 2: bacteria/bacteria interactions. Microb. Ecol. Health Dis., 12(2):240-246.

[10]Fossati, P., Prencipe, L., 1982. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin. Chem., 28(10):2077-2080.

[11]Gilliland, S.E., Nelson, C.R., Maxwell, C., 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol., 49(2):377-381.

[12]Gionchetti, P., Rizzello, F., Venturi, A., et al., 2000. Probiotics in infective diarrhoea and inflammatory bowel diseases. J. Gastroenterol. Hepatol., 15(5):489-493.

[13]Hannon, J.A., Wilkinson, M.G., Delahunty, C.M., et al., 2003. Use of autolytic starter systems to accelerate the ripening of Cheddar cheese. Int. Dairy J., 13(4):313-323.

[14]He, Z.S., Luo, H., Cao, C.H., et al., 2004. Photometric determination of hydroxyl free radical in Fenton system by brilliant green. Am. J. Chin. Med., 6:236-237.

[15]Hudault, S., Liévin, V., Bernet-Camard, M.F., et al., 1997. Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Appl. Environ. Microbiol., 63(2):513-518.

[16]Ikeda, T., Yasui, C., Hoshino, K., et al., 2007. Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against Salmonella enterica serovar enteritidis. Appl. Environ. Microbiol., 73(20):6404-6409.

[17]Jia, X., Luan, H., Huang, J., et al., 2014. Marketing raw milk from dairy farmers before and after the 2008 milk scandal in China: evidence from greater Beijing. Agribusiness, 30(4):410-423.

[18]Jyoti, B.D., Suresh, A.K., Venkatesh, K.V., 2003. Diacetyl production and growth of Lactobacillus rhamnosus on multiple substrates. World J. Microbiol. Biotechnol., 19(5):509-514.

[19]Kanmani, P., Satish Kumar, R., Yuvaraj, N., et al., 2013. Probiotics and its functionally valuable products—a review. Crit. Rev. Food Sci. Nutr., 53(6):641-658.

[20]Kao, T.H., Chen, B.H., 2006. Functional components in soybean cake and their effects on antioxidant activity. J. Agric. Food Chem., 54(20):7544-7555.

[21]Kennya, O., Fitzgerald, R.J., O'Cuinnc, G., et al., 2006. Autolysis of selected Lactobacillus helveticus adjunct strains during Cheddar cheese ripening. Int. Dairy J., 16(7):797-804.

[22]Kim, Y., Whang, J.Y., Whang, K.Y., et al., 2008. Characterization of the cholesterol-reducing activity in a cell-free supernatant of Lactobacillus acidophilus ATCC 43121. Biosci. Biotechnol. Biochem., 72(6):1483-1490.

[23]Kullisaar, T., Zilmer, M., Mikelsaar, M., et al., 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol., 72(3):215-224.

[24]Kurz, C.L., Tan, M.W., 2004. Regulation of aging and innate immunity in C. elegans. Aging Cell, 3(4):185-193.

[25]Lin, M.Y., Yen, C.L., 1999. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem., 47(4):1460-1466.

[26]Liong, M.T., Shah, N.P., 2005. Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. Int. Dairy J., 15(4):391-398.

[27]Maragkoudakis, P.A., Zoumpopoulou, G., Miaris, C., et al., 2006. Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J., 16(3):189-199.

[28]Martini, M.C., Bollweg, G.L., Levitt, M.D., et al., 1987. Lactose digestion by yogurt β-galactosidase: influence of pH and microbial cell integrity. Am. J. Clin. Nutr., 45(2):432-436.

[29]Ministry of Health of the People’s Republic of China, 2010. GB 19301-2010: National Food Safety Standard. Raw Milk. National Standard of the People’s Republic of China (in Chinese).

[30]Mora, D., Scarpellini, M., Franzetti, L., et al., 2003. Reclassification of Lactobacillus maltaromicus (Miller et al. 1974) DSM 20342T and DSM 20344 and Carnobacterium piscicola (Collins et al. 1987) DSM 20730T and DSM 20722 as Carnobacterium maltaromaticum comb. nov. Int. J. Syst. Evol. Microbiol., 53(Pt. 3):675-678.

[31]Nguyen, T.D., Kang, J.H., Lee, M.S., 2007. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int. J. Food Microbiol., 113(3):358-361.

[32]Ooi, L.G., Liong, M.T., 2010. Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int. J. Mol. Sci., 11(6):2499-2522.

[33]Pelletier, C., Bouley, C., Cayuela, C., et al., 1997. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl. Environ. Microbiol., 63(5):1725-1731.

[34]Sanders, M.E., Walker, D.C., Walker, K.M., et al., 1996. Performance of commercial cultures in fluid milk applications. J. Dairy Sci., 79(6):943-955.

[35]Saravanan, G., Ponmurugan, P., 2012. Ameliorative potential of S-allylcysteine: effect on lipid profile and changes in tissue fatty acid composition in experimental diabetes. Exp. Toxicol. Pathol., 64(6):639-644.

[36]Scatassa, M.L., Gaglio, R., Macaluso, G., et al., 2015. Transfer, composition and technological characterization of the lactic acid bacterial populations of the wooden vats used to produce traditional stretched cheeses. Food Microbiol., 52:31-41.

[37]Schiffrin, E.J., Brassart, D., Servin, A.L., et al., 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am. J. Clin. Nutr., 66(2):515S-520S.

[38]Schillinger, U., Guigas, C., Heinrich Holzapfel, W., 2005. In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. Int. Dairy J., 15(12):1289-1297.

[39]Schmidt, T.M., DeLong, E.F., Pace, N.R., 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol., 173(14):4371-4378.

[40]Sip, A., Więckowicz, M., Olejnik-Schmidt, A., et al., 2012. Anti-Listeria activity of lactic acid bacteria isolated from golka, a regional cheese produced in Poland. Food Control, 26(1):117-124.

[41]Tamang, J.P., Tamang, B., Schillinger, U., et al., 2005. Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the Eastern Himalayas. Int. J. Food Microbiol., 105(3):347-356.

[42]Turchi, B., Mancini, S., Fratini, F., et al., 2013. Preliminary evaluation of probiotic potential of Lactobacillus plantarum strains isolated from Italian food products. World J. Microbiol. Biotechnol., 29(10):1913-1922.

[43]Usman, Hosono, A., 1999. Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J. Dairy Sci., 82(2):243-248.

[44]van der Meulen, R., Scheirlinck, I., van Schoor, A., et al., 2007. Population dynamics and metabolite target analysis of lactic acid bacteria during laboratory fermentations of wheat and spelt sourdoughs. Appl. Environ. Microbiol., 73(15):4741-4750.

[45]Walker, D.K., Gilliland, S.E., 1993. Relationships among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. J. Dairy Sci., 76(4):956-961.

[46]Wang, C.Y., Wu, S.C., Ng, C.C., et al., 2010. Effect of Lactobacillus-fermented adlay-based milk on lipid metabolism of hamsters fed cholesterol-enriched diet. Food Res. Int., 43(3):819-824.

[47]Wang, Y., Lu, Z., Wu, H., et al., 2009. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int. J. Food Microbiol., 136(1):71-74.

[48]Yu, J., Wang, W.H., Menghe, B.L.G., et al., 2011. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia. J. Dairy Sci., 94(7):3229-3241.

[49]List of electronic supplementary materials

[50]Table S1 Physiological and biochemical characteristics of six strains

[51]Table S2 Acidifying activity of six strains of lactic acid bacteria isolated from Xinjiang cheese

[52]Table S3 Diacetyl-producing abilities of six strains of lactic acid bacteria isolated from Xinjiang cheese

[53]Table S4 Autolysis activities of six strains of lactic acid bacteria isolated from Xinjiang cheese

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE