CLC number: Q78
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-11-15
Cited: 0
Clicked: 6194
Mohammed A. El-Magd, Ayman A. Saleh, Abeer A. Nafeaa, Shymaa M. El-Komy, Mohamed A. Afifi. Polymorphisms of the IGF1 gene and their association with growth traits, serum concentration and expression rate of IGF1 and IGF1R in buffalo[J]. Journal of Zhejiang University Science B, 2017, 18(12): 1064-1074.
@article{title="Polymorphisms of the IGF1 gene and their association with growth traits, serum concentration and expression rate of IGF1 and IGF1R in buffalo",
author="Mohammed A. El-Magd, Ayman A. Saleh, Abeer A. Nafeaa, Shymaa M. El-Komy, Mohamed A. Afifi",
journal="Journal of Zhejiang University Science B",
volume="18",
number="12",
pages="1064-1074",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600573"
}
%0 Journal Article
%T Polymorphisms of the IGF1 gene and their association with growth traits, serum concentration and expression rate of IGF1 and IGF1R in buffalo
%A Mohammed A. El-Magd
%A Ayman A. Saleh
%A Abeer A. Nafeaa
%A Shymaa M. El-Komy
%A Mohamed A. Afifi
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 12
%P 1064-1074
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600573
TY - JOUR
T1 - Polymorphisms of the IGF1 gene and their association with growth traits, serum concentration and expression rate of IGF1 and IGF1R in buffalo
A1 - Mohammed A. El-Magd
A1 - Ayman A. Saleh
A1 - Abeer A. Nafeaa
A1 - Shymaa M. El-Komy
A1 - Mohamed A. Afifi
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 12
SP - 1064
EP - 1074
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600573
Abstract: The insulin-like growth factor 1 (IGF1) gene is a member of the group of somatotropin axis genes that play a significant role in cell proliferation and growth of muscles. Here, we searched for polymorphisms in buffalo IGF1 and found two novel single nucleotide polymorphisms (SNPs), G64A and G280A, in the noncoding sequences of exon 1 and exon 4, respectively. Statistical analysis of different genotypes showed that the individuals with GG genotypes had significantly (P<0.05) higher body weight (BW) and average daily gain (ADG) than those with other genotypes at ages of 3–6 months in G64A SNP and 6–9 months in G280A SNP. The combined genotypes of these two SNPs produced three haplotypes, GG/GG, AG/AG, and AA/AA, which were significantly associated (P<0.0001) with BW and ADG at an age from 3 to 12 months. buffaloes with the homozygous GG/GG haplotype showed higher growth performance than other buffaloes. The two SNPs were correlated with mRNA levels of IGF1 and IGF1 receptor (IGF1R) in semitendinosus muscle as well as with the serum concentration level of IGF1. Also, buffaloes with GG/GG haplotype showed higher mRNA and serum concentration levels. The data revealed that these two SNPs could be valuable genetic markers for selection of Egyptian buffaloes for better performance in the population.
[1]Abo-Al-Ela, H.G., El-Magd, M.A., El-Nahas, A.F., et al., 2014. Association of a novel SNP in exon 10 of the IGF2 gene with growth traits in Egyptian water buffalo (Bubalus bubalis). Trop. Anim. Health Prod., 46(6):947-952.
[2]Andrade, P.C., Grossi, D.A., Paz, C.C., et al., 2008. Association of an insulin-like growth factor 1 gene microsatellite with phenotypic variation and estimated breeding values of growth traits in Canchim cattle. Anim. Genet., 39(5):480-485.
[3]Barrett, J.C., Fry, B., Maller, J., et al., 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2):263-265.
[4]Bishop, M.D., Simmen, R.C., Simmen, F.A., et al., 1989. The relationship of insulin-like growth factor-I with postweaning performance in Angus beef cattle. J. Anim. Sci., 67(11):2872-2880.
[5]Chung, E.R., Kim, W.T., 2005. Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian-Australas J. Anim. Sci., 18(8):1061-1065.
[6]de la Reyna, X.F., Montoya, H.M., Castrellón, V.V., et al., 2010. Polymorphisms in the IGF1 gene and their effect on growth traits in Mexican beef cattle. Genet. Mol. Res., 9(2):875-883.
[7]Dierkes, B., Kriegesmann, B., Silva, A., et al., 1999. Characterisation of a G→A transition polymorphism within an Eco130I site of intron 3 of the insulin-like growth factor-1 (IGF1) gene of swamp buffaloes (Bubalus b. bubalis kerebau). Anim. Genet., 30(5):405.
[8]El-Magd, M.A., Abbas, H.E., El-kattawy, A.M., et al., 2013. Novel polymorphisms of the IGF1R gene and their association with average daily gain in Egyptian buffalo (Bubalus bubalis). Domest. Anim. Endocrinol., 45(2):105-110.
[9]El-Magd, M.A., Abo-Al-Ela, H.G., El-Nahas, A., et al., 2014. Effects of a novel SNP of IGF2R gene on growth traits and expression rate of IGF2R and IGF2 genes in gluteus medius muscle of Egyptian buffalo. Gene, 540(2):133-139.
[10]Falconer, D.S., Mackay, T.F.C., 1996. Introduction to Quantitative Genetics. Longman, England.
[11]Fatima, S., Bhatt, S.M., Bhong, C.D., et al., 2009. Genetic polymorphism study of IGF-I gene in buffaloes of Gujarat. Buffalo Bull., 28(3):159-164.
[12]Fotsis, T., Murphy, C., Gannon, F., 1990. Nucleotide sequence of the bovine insulin-like growth factor 1 (IGF-1) and its IGF-1A precursor. Nucleic Acids Res., 18(3):676.
[13]Ge, W., Davis, M.E., Hines, H.C., et al., 2001. Association of a genetic marker with blood serum insulin-like growth factor-I concentration and growth traits in Angus cattle. J. Anim. Sci., 79(7):1757-1762.
[14]Gerrard, D.E., Okamura, C.S., Ranalletta, M.A., et al., 1998. Developmental expression and location of IGF-I and IGF-II mRNA and protein in skeletal muscle. J. Anim. Sci., 76(4):1004-1011.
[15]Grosse, W.M., Kappes, S.M., Laegreid, W.W., et al., 1999. Single nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes. Mamm. Genome, 10(11):1062-1069.
[16]Ho Sui, S.J., Fulton, D.L., Arenillas, D.J., et al., 2007. POSSUM: integrated tools for analysis of regulatory motif over-representation. Nucleic Acids Res., 35(Suppl. 2):W245-W252.
[17]Islam, K.K., Vinsky, M., Crews, R.E., et al., 2009. Association analyses of a SNP in the promoter of IGF1 with fat deposition and carcass merit traits in hybrid, Angus and Charolais beef cattle. Anim. Genet., 40(5):766-769.
[18]Jones, J.I., Clemmons, D.R., 1995. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev., 16(1):3-34.
[19]Komar, A.A., 2007. Silent SNPs: impact on gene function and phenotype. Pharmacogenomics, 8(8):1075-1080.
[20]Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4):402-408.
[21]Maj, A., Snochowski, M., Siadkowska, E., et al., 2008. Polymorphism in genes of growth hormone receptor (GHR) and insulin-like growth factor-1 (IGF1) and its association with both the IGF1 expression in liver and its level in blood in Polish Holstein-Friesian cattle. Neuro Endocrinol. Lett., 29(6):981-989.
[22]Mirzaei, A., Sharifiyazdi, H., Ahmadi, M.R., et al., 2012. The effect of polymorphism in gene of insulin-like growth factor-I on the serum periparturient concentration in Holstein dairy cows. Asian Pacific J. Trop. Biomed., 2(10):765-769.
[23]Mullen, M.P., Lynch, C.O., Waters, S.M., et al., 2011. Single nucleotide polymorphisms in the growth hormone and insulin-like growth factor-1 genes are associated with milk production, body condition score and fertility traits in dairy cows. Genet. Mol. Res., 10(3):1819-1830.
[24]Nagaraja, S.C., Aggrey, S.E., Yao, J., et al., 2000. Trait association of a genetic marker near the IGF-I gene in egg-laying chickens. J. Hered., 91(2):150-156.
[25]Norton, C.R., Chen, Y., Han, X.H., et al., 2013. Absence of a major role for the Snai1 and Snai3 genes in regulating skeletal muscle regeneration in mice. PLoS Curr. Musc. Dystrophy, 5:1-12.
[26]Oksbjerg, N., Gondret, F., Vestergaard, M., 2004. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest. Anim. Endocrinol., 27(3):219-240.
[27]Quandt, K., Frech, K., Karas, H., et al., 1995. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res., 23(23):4878-4884.
[28]Sahana, G., Guldbrandtsen, B., Bendixen, C., et al., 2010. Genome-wide association mapping for female fertility traits in Danish and Swedish Holstein cattle. Anim. Genet., 41(6):579-588.
[29]Shavlakadze, T., Chai, J., Maley, K., et al., 2010. A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo. J. Cell Sci., 123(6):960-971.
[30]Siadkowska, E., Zwierzchowski, L., Oprządek, J., et al., 2006. Effect of polymorphism in IGF-1 gene on production traits in Polish Holstein-Friesian cattle. Anim. Sci. Papers Rep., 24(3):225-237.
[31]Umansky, K.B., Gruenbaum-Cohen, Y., Tsoory, M., et al., 2015. Runx1 transcription factor is required for myoblasts proliferation during muscle regeneration. PLoS Genet., 11(8):e1005457.
[32]Vaiman, D., Mercier, D., Moazami-Goudarzi, K., et al., 1994. A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism. Mamm Genome, 5(5):288-297.
[33]van Laere, A.S., Nguyen, M., Braunschweig, M., et al., 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 425(6960):832-836.
[34]Wang, Q., Fang, C., Liu, W.J., et al., 2011. A novel mutation at exon 4 of IGF-1 gene in three indigenous goat breeds in China. Asian J. Anim. Vet. Adv., 6(6):627-635.
[35]Wang, Y., Price, S.E., Jiang, H., 2003. Cloning and characterization of the bovine class 1 and class 2 insulin-like growth factor-I mRNAs. Domest. Anim. Endocrinol., 25(4):315-328.
[36]Werner, H., Adamo, M., Roberts, C.T., et al., 1994. Molecular and cellular aspects of insulin-like growth factor action. Vitam. Horm., 48:1-58.
Open peer comments: Debate/Discuss/Question/Opinion
<1>