Full Text:   <2046>

Summary:  <1679>

CLC number: R775

On-line Access: 2020-04-07

Received: 2019-08-29

Revision Accepted: 2020-01-07

Crosschecked: 2020-03-11

Cited: 0

Clicked: 3412

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2020 Vol.21 No.4 P.305-314


Central visual function and inner retinal structure in primary open-angle glaucoma

Author(s):  Li-Juan Xu, Sha-Ling Li, Vance Zemon, Yan-Qian Xie, Yuan-Bo Liang

Affiliation(s):  Clinical and Epidemiological Eye Research Center, Eye Hospital, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou 325027, China; more

Corresponding email(s):   yuanboliang@126.com

Key Words:  Isolated-check visual evoked potential (icVEP), Primary open-angle glaucoma (POAG), Optical coherence tomography (OCT), Standard automated perimetry (SAP)

Li-Juan Xu, Sha-Ling Li, Vance Zemon, Yan-Qian Xie, Yuan-Bo Liang. Central visual function and inner retinal structure in primary open-angle glaucoma[J]. Journal of Zhejiang University Science B, 2020, 21(4): 305-314.

@article{title="Central visual function and inner retinal structure in primary open-angle glaucoma",
author="Li-Juan Xu, Sha-Ling Li, Vance Zemon, Yan-Qian Xie, Yuan-Bo Liang",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Central visual function and inner retinal structure in primary open-angle glaucoma
%A Li-Juan Xu
%A Sha-Ling Li
%A Vance Zemon
%A Yan-Qian Xie
%A Yuan-Bo Liang
%J Journal of Zhejiang University SCIENCE B
%V 21
%N 4
%P 305-314
%@ 1673-1581
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1900506

T1 - Central visual function and inner retinal structure in primary open-angle glaucoma
A1 - Li-Juan Xu
A1 - Sha-Ling Li
A1 - Vance Zemon
A1 - Yan-Qian Xie
A1 - Yuan-Bo Liang
J0 - Journal of Zhejiang University Science B
VL - 21
IS - 4
SP - 305
EP - 314
%@ 1673-1581
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1900506

To investigate associations between central visual function and inner retinal structure in primary open-angle glaucoma (POAG). This study enrolled 78 POAG patients and 58 healthy controls. POAG was classified into early glaucoma and moderate to advanced glaucoma. The following tests were performed on all participants: isolated-check visual evoked potential (icVEP) testing, 24-2 standard automated perimetry (SAP), and Cirrus optical coherence tomography (OCT) examinations. Signal-to-noise ratio (SNR) measures obtained from icVEP responses to isolated checks presented at four depths of modulation (DOMs; 8%, 14%, 22%, and 32%) were explored. Mean macular sensitivity (mMS) was assessed by calculating the mean sensitivities of central 12 SAP points. Ganglion cell layer+ inner plexiform layer thickness (GCL+IPLT) and peripapillary retinal nerve fiber layer thickness (pRNFLT) were measured by OCT scanning. For each group of subjects, linear relationships among the following measures were analyzed: SNR, mMS, GCL+IPLT, and pRNFLT. SNR, mMS, GCL+IPLT, and pRNFLT were all more significantly decreased in glaucoma than in controls (P<0.001). A significant positive association was found between SNR at 14% DOM and GCL+IPLT at the inferior sector in early glaucoma (r=0.465, P=0.004). In moderate to advanced glaucoma, significant correlations were found between SNR at 32% DOM and mean GCL+IPLT (r=0.364, P=0.023), superior GCL+IPLT (r=0.358, P=0.025), and mean pRNFLT (r=0.396, P=0.025). In addition, in moderate to advanced glaucoma, there were significant correlations between mMS and all relevant measures of retinal thickness (r=0.330–0.663, P< 0.010). In early glaucoma, significant correlations were found between mean mMS and minimum GCL+IPLT (r=0.373, P=0.023), and between inferior mMS and superior GCL+IPLT (r=0.470, P=0.003). Linear models provided a good explanation for the relationship between SNR and inner retinal thickness (IRT), whereas nonlinear models better explained the relationship between mMS and IRT. In early glaucoma, both SNR and mMS were related moderately and significantly to IRT, whereas in moderate to advanced glaucoma, mMS was more strongly correlated with IRT than SNR.


创新点:POAG的潜在原因是视网膜神经节细胞(RGC)的丢失.虽然在传统上我们可以通过测量视网膜后极部约30°的结构和功能来评估青光眼性视神经损害,但是50%的RGC存在于黄斑区4.5 mm范围内.本研究关注黄斑区约10°范围视网膜结构和功能的关系,有助于更早地监测到青光眼性视神经损害.


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Bartz-Schmidt KU, Thumann G, Jonescu-Cuypers CP, et al., 1999. Quantitative morphologic and functional evaluation of the optic nerve head in chronic open-angle glaucoma. Surv Ophthalmol, 44(Suppl 1):S41-S53.

[2]Budenz DL, Rhee P, Feuer WJ, et al., 2002. Comparison of glaucomatous visual field defects using standard full threshold and Swedish interactive threshold algorithms. Arch Ophthalmol, 120(9):1136-1141.

[3]Curcio CA, Allen KA, 1990. Topography of ganglion cells in human retina. J Comp Neurol, 300(1):5-25.

[4]de Moraes CG, Sun A, Jarukasetphon R, et al., 2019. Association of macular visual field measurements with glaucoma staging systems. JAMA Ophthalmol, 137(2):139-145.

[5]Garway-Heath DF, Caprioli J, Fitzke FW, et al., 2000. Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci, 41(7):1774-1782.

[6]Glovinsky Y, Quigley HA, Dunkelberger GR, 1991. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci, 32(3):484-491.

[7]Glovinsky Y, Quigley HA, Pease ME, 1993. Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci, 34(2):395-400.

[8]Greenstein VC, Seliger S, Zemon V, et al., 1998. Visual evoked potential assessment of the effects of glaucoma on visual subsystems. Vision Res, 38(12):1901-1911.

[9]Gutowitz H, Zemon V, Victor J, et al., 1986. Source geometry and dynamics of the visual evoked potential. Electroencephalogr Clin Neurophysiol, 64(4):308-327.

[10]Harwerth RS, Carter-Dawson L, Shen F, et al., 1999. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci, 40(10):2242-2250.

[11]Harwerth RS, Vilupuru AS, Rangaswamy NV, et al., 2007. The relationship between nerve fiber layer and perimetry measurements. Invest Ophthalmol Vis Sci, 48(2):763-773.

[12]Harwerth RS, Wheat JL, Fredette MJ, et al., 2010. Linking structure and function in glaucoma. Prog Retin Eye Res, 29(4):249-271.

[13]Hood DC, Anderson SC, Wall M, et al., 2007. Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci, 48(8):3662-3668.

[14]Hood DC, Raza AS, de Moraes CGV, et al., 2013. Glaucomatous damage of the macula. Prog Retin Eye Res, 32: 1-21.

[15]Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al., 2000. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci, 41(3):741-748.

[16]Kim KE, Park KH, Jeoung JW, et al., 2014. Severity-dependent association between ganglion cell inner plexiform layer thickness and macular mean sensitivity in open-angle glaucoma. Acta Ophthalmol, 92(8):e650-e656.

[17]Mwanza JC, Oakley JD, Budenz DL, et al., 2011. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci, 52(11):8323-8329.

[18]Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N, et al., 2013. Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol, 156(6):1297-1307.e2.

[19]Quigley HA, 1999. Neuronal death in glaucoma. Prog Retin Eye Res, 18(1):39-57.

[20]Quigley HA, Dunkelberger GR, Green WR, 1989. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol, 107(5):453-464.

[21]van Buskirk EM, Cioffi GA, 1992. Glaucomatous optic neuropathy. Am J Ophthalmol, 113(4):447-452.

[22]Xu LJ, Zhang L, Li SL, et al., 2017. Accuracy of isolated-check visual evoked potential technique for diagnosing primary open-angle glaucoma. Doc Ophthalmol, 135(2):107-119.

[23]Yanashima K, 1982. Surface distribution of steady-state cortical potentials evoked by visual half-field stimulation. Graefes Arch Clin Exp Ophthalmol, 218(3):118-123.

[24]Zemon V, Eisner W, Gordon J, et al., 1995. Contrast-dependent responses in the human visual system: childhood through adulthood. Int J Neurosci, 80(1-4):181-201.

[25]Zemon V, Tsai JC, Forbes M, et al., 2008. Novel electrophysiological instrument for rapid and objective assessment of magnocellular deficits associated with glaucoma. Doc Ophthalmol, 117(3):233-243.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE