CLC number: TN752.5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-09-11
Cited: 3
Clicked: 8216
Neda Kazemy Najafabadi, Sare Nemati, Massoud Dousti. Design of MMIC oscillators using GaAs 0.2 μm PHEMT technology[J]. Journal of Zhejiang University Science C, 2012, 13(10): 793-798.
@article{title="Design of MMIC oscillators using GaAs 0.2 μm PHEMT technology",
author="Neda Kazemy Najafabadi, Sare Nemati, Massoud Dousti",
journal="Journal of Zhejiang University Science C",
volume="13",
number="10",
pages="793-798",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1200013"
}
%0 Journal Article
%T Design of MMIC oscillators using GaAs 0.2 μm PHEMT technology
%A Neda Kazemy Najafabadi
%A Sare Nemati
%A Massoud Dousti
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 10
%P 793-798
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1200013
TY - JOUR
T1 - Design of MMIC oscillators using GaAs 0.2 μm PHEMT technology
A1 - Neda Kazemy Najafabadi
A1 - Sare Nemati
A1 - Massoud Dousti
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 10
SP - 793
EP - 798
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1200013
Abstract: We propose a feedback type oscillator and two negative resistance oscillators. These microwave oscillators have been designed in the S band frequency. A relatively symmetric resonator is used in the feedback type oscillator. The first negative resistance oscillator uses a simple lumped element resonator which is substituted by a microstrip resonator in the second oscillator to improve results. The negative resistance oscillator produces 4.207 dBm and 7.124 dBm output power with the lumped element resonator and microstrip resonator respectively, and the feedback type oscillator produces −10.707 dBm output power. The feedback type oscillator operates at 3 GHz with phase noise levels at −83.30 dBc/Hz and −103.3 dBc/Hz at 100 kHz and 1 MHz offset frequencies respectively. The phase noise levels of the negative resistance oscillator with the lumped element resonator are −94.64 dBc/Hz and −116 dBc/Hz at 100 kHz and 1 MHz offset frequencies respectively, at an oscillation frequency of 3.053 GHz. With the microstrip resonator the phase noise levels are −99.49 dBc/Hz and −119.641 dBc/Hz at 100 kHz and 1 MHz offset frequencies respectively, at an oscillation frequency of 3.072 GHz. The results showed that both the output power and the phase noise of the negative resistance oscillators were better than those of the feedback type oscillator.
[1]Ain, M.F., Lancaster, M.J., Gardner, P., 2001. Design of L-Band Microwave Oscillators. 6th IEEE High Frequency Postgraduate Student Colloquium, p.19-24.
[2]Chenakin, A., 2009. Phase noise reduction in microwave oscillators. Microw. J., 52:124-140.
[3]Choi, S., Yu, H., Kim, Y., 2009. A 2.4/5.2-GHz dual band CMOS VCO using bias matching network. J. Semicond. Technol. Sci., 9(4):192-197.
[4]Collin, R.E., 1992. Fundamentals of Microwave Engineering (2nd Ed.). McGraw-Hill, NY.
[5]Ellinger, F., 2008. Radio Frequency Integrated Circuits and Technologies (2nd Ed.). Springer Verlag Berlin Heidelberg.
[6]Gilmore, R., Besser, L., 2003. Practical RF Circuit Design for Modern Wireless Systems. Vol. 2, Artech House, London.
[7]Gonzalez, G., 1997. Microwave Transistor Amplifiers: Analysis and Design (2nd Ed.). Prentice-Hall, Inc., New Jersey.
[8]Gonzalez-Posadas, V., Jimenez-Martin, J.L., Parra-Cerrada, A., Segovia-Vargas, D., Garcia-Munoz, L.E., 2011. Oscillator accurate linear analysis and design classic linear methods review and comments. Progr. Electromagn. Res., 118:89-116.
[9]Greennikov, A.V., 1999. Stability of negative resistance oscillator circuits. Int. J. Electr. Eng. Educ., 36:242-254.
[10]Hauspie, D., Park, E., Craninckx, J., 2007. Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size. IEEE J. Solid-State Circ., 42(7):1472-1480.
[11]Krowne, C.M., 2006. Network analaysis of microwave oscillators using microstrip transmission lines. IEEE Electron. Lett., 13(4):115-117.
[12]Mahyuddin, N.M., Ain, M.F., Hassan, S., 2006. Modeling of a 10GHz Dielectric Resonator Oscillator in ADS. Int. RF and Microwave Conf., p.106-110.
[13]Pozar, D.M., 1993. Microwave Engineering. Addison-Wesley, USA.
[14]Ramarajn, B., Sreekanth, S., Kumari, D.L., 2011. Design and development of X-band oscillator for FM telemetry transmitter. Int. J. Eng. Sci. Technol., 3(5):4003-4013.
[15]Razavi, B., 1989. RF Microelectronics. Prentice Hall, New Jersey.
[16]Tony, C.H., 2001. The Design of 2.4 GHz Bipolar Oscillator by Using the Method of Negative Resistance. Microwave Laboratory, Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China.
[17]Yoo, H., Maharjan, R.K., Kim, N., 2010. An X-band InGaP/ GaAs hetero-junction bipolar transistor based microwave integrated circuit differential voltage controlled oscillator for satellite communications. IETE J., 56:340-345.
Open peer comments: Debate/Discuss/Question/Opinion
<1>