Full Text:   <3358>

Summary:  <2030>

CLC number: TP391.41

On-line Access: 2014-10-09

Received: 2014-02-06

Revision Accepted: 2014-05-05

Crosschecked: 2014-09-17

Cited: 0

Clicked: 8570

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.10 P.917-928

http://doi.org/10.1631/jzus.C1400034


Joint adaptive power allocation and interference suppression algorithms based on the MSER criterion for wireless sensor networks


Author(s):  Gui-jie Wang, Yun-long Cai, Min-jian Zhao, Jie Zhong

Affiliation(s):  Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   wgj8711@zju.edu.cn, ylcai@zju.edu.cn, mjzhao@zju.edu.cn, zhongjie@zju.edu.cn

Key Words:  Cooperative communications, Adaptive filtering, Symbol error rate (SER), Interference suppression, Power allocation


Gui-jie Wang, Yun-long Cai, Min-jian Zhao, Jie Zhong. Joint adaptive power allocation and interference suppression algorithms based on the MSER criterion for wireless sensor networks[J]. Journal of Zhejiang University Science C, 2014, 15(10): 917-928.

@article{title="Joint adaptive power allocation and interference suppression algorithms based on the MSER criterion for wireless sensor networks",
author="Gui-jie Wang, Yun-long Cai, Min-jian Zhao, Jie Zhong",
journal="Journal of Zhejiang University Science C",
volume="15",
number="10",
pages="917-928",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400034"
}

%0 Journal Article
%T Joint adaptive power allocation and interference suppression algorithms based on the MSER criterion for wireless sensor networks
%A Gui-jie Wang
%A Yun-long Cai
%A Min-jian Zhao
%A Jie Zhong
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 10
%P 917-928
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400034

TY - JOUR
T1 - Joint adaptive power allocation and interference suppression algorithms based on the MSER criterion for wireless sensor networks
A1 - Gui-jie Wang
A1 - Yun-long Cai
A1 - Min-jian Zhao
A1 - Jie Zhong
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 10
SP - 917
EP - 928
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400034


Abstract: 
In this study, a two-hop wireless sensor network with multiple relay nodes is considered where the amplify-and-forward (AF) scheme is employed. Two algorithms are presented to jointly consider interference suppression and power allocation (PA) based on the minimization of the symbol error rate (SER) criterion. A stochastic gradient (SG) algorithm is developed on the basis of the minimum-SER (MSER) criterion to jointly update the parameter vectors that allocate the power levels among the relay sensors subject to a total power constraint and the linear receiver. In addition, a conjugate gradient (CG) algorithm is developed on the basis of the SER criterion. A centralized algorithm is designed at the fusion center. Destination nodes transmit the quantized information of the PA vector to the relay nodes through a limited-feedback channel. The complexity and convergence analysis of the proposed algorithms are carried out. Simulation results show that the proposed two adaptive algorithms significantly outperform the other previously reported algorithms.

无线传感器网络中基于最小化误符号率的联合功率分配和干扰消除算法研究

研究目的:提出一种基于最小化误符号率(minimum symbol error rate, MSER)准则的自适应更新算法(JMBER),使得无线传感器网络中的误符号率性能最佳。
创新要点:以随机梯度和共轭梯度方法为基础,同时考虑了功率分配和干扰消除问题。
研究方法:针对一个含有多中继节点并采用放大转发机制的两跳无线传感器网络,提出两种基于最小化误符号率准则的联合干扰消除和功率分配算法(随机梯度算法和共轭梯度算法),联合更新参数向量,使得各中继功率服从功率限制和线性接收要求。两种算法都考虑了反馈功率分配系数。注意到中继节点和目的节点在离线情况下对反馈码本是一致的,结合中继基于对信号的估计和对功率分配向量的量化得出码本,每一个目的节点从码本选取对应的序号,节点将对应的序号通过信道有限反馈传送至中继节点。基于核密度估计的概率密度函数,推导出算法理论,并给出收敛性和计算复杂度分析。
重要结论:仿真结果表明,这两种自适应算法的性能显著优于现有算法。
协作通信;自适应滤波;误符号率;干扰消除;功率分配

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., et al., 2002. A survey on sensor networks. IEEE Commun. Mag., 40(8):102-114.

[2]Boray, G.K., Srinath, M.D., 1992. Conjugate gradient techniques for adaptive filtering. IEEE Trans. Circ. Syst. I, 39(1):1-10.

[3]Bowman, A.W., Azzalini, A., 1997. Applied Smoothing Techniques for Data Analysis. Oxford University Press, Oxford, UK.

[4]Chen, J., Ueng, F., Lin, P., 2011. A low-complexity adaptive receiver for DS-CDMA systems in unknown code delay environment. Int. J. Commun. Syst., 24(2):225-238.

[5]Chen, S., Hanzo, L., Ahmad, N.N., et al., 2004a. Adaptive minimum bit error rate beamforming assisted QPSK receiver. Proc. Int. Conf. on Communications, p.3389-3393.

[6]Chen, S., Hanzo, L., Mulgrew, B., 2004b. Adaptive minimum symbol-error-rate decision feedback equalization for multilever pulse-amplitude modulation. IEEE Trans. Signal Process., 52(7):2092-2101.

[7]Chen, S., Livingstong, A., Du, H.Q., et al., 2008a. Adaptive minimum symbol error rate beamforming assisted detection for quadrature amplitude modulation. IEEE Trans. Wirel. Commun., 7(4):1140-1145.

[8]Chen, S., Tan, S., Xu, L., et al., 2008b. Adaptive minimum error-rate filtering design: a review. Signal Process., 88(7):1671-1697.

[9]Clarke, P., de Lamare, R.C., 2011. Joint transmit diversity optimization and relay selection for multi-relay cooperative MIMO systems using discrete stochastic algorithms. IEEE Commun. Lett., 15(10):1035-1037.

[10]Clarke, P., de Lamare, R.C., 2012. Transmit diversity and relay selection algorithms for multirelay cooperative MIMO systems. IEEE Trans. Veh. Technol., 61(3):1084-1098.

[11]Csiszar, I., Tusnady, G., 1984. Information geometry and alternating minimization procedures. Statist. Dec., 1:205-237.

[12]de Lamare, R.C., Sampaio-Neto, R., 2003. Adaptive MBER decision feedback multiuser receivers in frequency selective fading channels. IEEE Commun. Lett., 7(2):73-75.

[13]Fischione, C., Johansson, K.H., Sangiovanni-Vincentelli, A., et al., 2009. Minimum energy coding in CDMA wireless sensor networks. IEEE Trans. Wirel. Commun., 8(2):985-994.

[14]Haykin, S.S., 2002. Adaptive Filter Theory. Prentice Hall, Englewood Cliffs, NJ, USA.

[15]Karami, E., 2007. Tracking performance of least squares MIMO channel estimation algorithm. IEEE Trans. Commun., 55(11):2201-2209.

[16]Kramer, G., Gastpar, M., Gupta, P., 2005. Cooperative strategies and capacity theorems for relay networks. IEEE Trans. Inform. Theory, 51(9):3037-3063.

[17]Krishna, R., Xiong, Z., Lambotharan, S., 2008. A cooperative MMSE relay strategy for wireless sensor networks. IEEE Signal Process. Lett., 15:549-552.

[18]Laneman, J.N., Tse, D.N.C., Wornell, G.W., 2004. Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inform. Theory, 50(12):3062-3080.

[19]Li, M., Hamouda, W., 2007. An adptive multiuser detector for DS-CDMA systems in multipath fading channels. Int. J. Commun. Syst., 20(11):1299-1313.

[20]Li, Y., Vucetic, B., Zhou, Z., et al., 2007. Distributed adaptive power allocation for wireless relay networks. IEEE Trans. Wirel. Commun., 6(3):948-958.

[21]Liu, G., Xu, B., Chen, H., 2012. Decentralized estimation over noisy channels in cluster-based wireless sensor networks. Int. J. Commun. Syst., 25(10):1313-1329.

[22]Niesen, U., Shah, D., Wornell, G.W., 2009. Adaptive alternating minimization algorithms. IEEE Trans. Inform. Theory, 55(3):1423-1429.

[23]Rui, X., 2010. Decode-and-forward with partial relay selection. Int. J. Commun. Syst., 23(11):1443-1448.

[24]Silerman, B., 1996. Density Estimation. Chapman Hall, London, UK.

[25]Souryal, M.R., Vojcic, B.R., Pickholtz, R.L., 2006. Adaptive modulation in ad hoc DS/CDMA packet radio networks. IEEE Trans. Commun., 54(4):714-725.

[26]Straeter, T.A., 1971. On the Extension of the Davidon-Broyden Class of Rank One, Quasi-Newton Minimization Methods to an Infinite Dimensional Hilbert Space with Applications to Optimal Control Problems. North Carolina State University at Raleigh.

[27]Verdu, S., 1998. Multiuser Detection. Cambridge University Press, USA.

[28]Wang, T., de Lamare, R.C., Schmeink, A., 2012. Joint linear receiver design and power allocation using alternating optimization algorithms for wireless sensor networks. IEEE Trans. Veh. Technol., 61(9):4129-4141.

[29]Wang, X., Lu, W., Antomiou, A., 2000. Constrained minimum-BER multiuser detection. IEEE Trans. Signal Process., 48(10):2903-2909.

[30]Wang, Y., Shi, P., Li, K., et al., 2012. An energy efficient medium access control protocol for target tracking based on dynamic convey tree collaboration in wireless sensor networks. Int. J. Commun. Syst., 25(9):1139-1159.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE