CLC number: TP391.41
On-line Access: 2014-10-09
Received: 2014-02-06
Revision Accepted: 2014-05-05
Crosschecked: 2014-09-17
Cited: 0
Clicked: 8570
Gui-jie Wang, Yun-long Cai, Min-jian Zhao, Jie Zhong. Joint adaptive power allocation and interference suppression algorithms based on the MSER criterion for wireless sensor networks[J]. Journal of Zhejiang University Science C, 2014, 15(10): 917-928.
@article{title="Joint adaptive power allocation and interference suppression algorithms based on the MSER criterion for wireless sensor networks",
author="Gui-jie Wang, Yun-long Cai, Min-jian Zhao, Jie Zhong",
journal="Journal of Zhejiang University Science C",
volume="15",
number="10",
pages="917-928",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400034"
}
%0 Journal Article
%T Joint adaptive power allocation and interference suppression algorithms based on the MSER criterion for wireless sensor networks
%A Gui-jie Wang
%A Yun-long Cai
%A Min-jian Zhao
%A Jie Zhong
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 10
%P 917-928
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400034
TY - JOUR
T1 - Joint adaptive power allocation and interference suppression algorithms based on the MSER criterion for wireless sensor networks
A1 - Gui-jie Wang
A1 - Yun-long Cai
A1 - Min-jian Zhao
A1 - Jie Zhong
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 10
SP - 917
EP - 928
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400034
Abstract: In this study, a two-hop wireless sensor network with multiple relay nodes is considered where the amplify-and-forward (AF) scheme is employed. Two algorithms are presented to jointly consider interference suppression and power allocation (PA) based on the minimization of the symbol error rate (SER) criterion. A stochastic gradient (SG) algorithm is developed on the basis of the minimum-SER (MSER) criterion to jointly update the parameter vectors that allocate the power levels among the relay sensors subject to a total power constraint and the linear receiver. In addition, a conjugate gradient (CG) algorithm is developed on the basis of the SER criterion. A centralized algorithm is designed at the fusion center. Destination nodes transmit the quantized information of the PA vector to the relay nodes through a limited-feedback channel. The complexity and convergence analysis of the proposed algorithms are carried out. Simulation results show that the proposed two adaptive algorithms significantly outperform the other previously reported algorithms.
[1]Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., et al., 2002. A survey on sensor networks. IEEE Commun. Mag., 40(8):102-114.
[2]Boray, G.K., Srinath, M.D., 1992. Conjugate gradient techniques for adaptive filtering. IEEE Trans. Circ. Syst. I, 39(1):1-10.
[3]Bowman, A.W., Azzalini, A., 1997. Applied Smoothing Techniques for Data Analysis. Oxford University Press, Oxford, UK.
[4]Chen, J., Ueng, F., Lin, P., 2011. A low-complexity adaptive receiver for DS-CDMA systems in unknown code delay environment. Int. J. Commun. Syst., 24(2):225-238.
[5]Chen, S., Hanzo, L., Ahmad, N.N., et al., 2004a. Adaptive minimum bit error rate beamforming assisted QPSK receiver. Proc. Int. Conf. on Communications, p.3389-3393.
[6]Chen, S., Hanzo, L., Mulgrew, B., 2004b. Adaptive minimum symbol-error-rate decision feedback equalization for multilever pulse-amplitude modulation. IEEE Trans. Signal Process., 52(7):2092-2101.
[7]Chen, S., Livingstong, A., Du, H.Q., et al., 2008a. Adaptive minimum symbol error rate beamforming assisted detection for quadrature amplitude modulation. IEEE Trans. Wirel. Commun., 7(4):1140-1145.
[8]Chen, S., Tan, S., Xu, L., et al., 2008b. Adaptive minimum error-rate filtering design: a review. Signal Process., 88(7):1671-1697.
[9]Clarke, P., de Lamare, R.C., 2011. Joint transmit diversity optimization and relay selection for multi-relay cooperative MIMO systems using discrete stochastic algorithms. IEEE Commun. Lett., 15(10):1035-1037.
[10]Clarke, P., de Lamare, R.C., 2012. Transmit diversity and relay selection algorithms for multirelay cooperative MIMO systems. IEEE Trans. Veh. Technol., 61(3):1084-1098.
[11]Csiszar, I., Tusnady, G., 1984. Information geometry and alternating minimization procedures. Statist. Dec., 1:205-237.
[12]de Lamare, R.C., Sampaio-Neto, R., 2003. Adaptive MBER decision feedback multiuser receivers in frequency selective fading channels. IEEE Commun. Lett., 7(2):73-75.
[13]Fischione, C., Johansson, K.H., Sangiovanni-Vincentelli, A., et al., 2009. Minimum energy coding in CDMA wireless sensor networks. IEEE Trans. Wirel. Commun., 8(2):985-994.
[14]Haykin, S.S., 2002. Adaptive Filter Theory. Prentice Hall, Englewood Cliffs, NJ, USA.
[15]Karami, E., 2007. Tracking performance of least squares MIMO channel estimation algorithm. IEEE Trans. Commun., 55(11):2201-2209.
[16]Kramer, G., Gastpar, M., Gupta, P., 2005. Cooperative strategies and capacity theorems for relay networks. IEEE Trans. Inform. Theory, 51(9):3037-3063.
[17]Krishna, R., Xiong, Z., Lambotharan, S., 2008. A cooperative MMSE relay strategy for wireless sensor networks. IEEE Signal Process. Lett., 15:549-552.
[18]Laneman, J.N., Tse, D.N.C., Wornell, G.W., 2004. Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inform. Theory, 50(12):3062-3080.
[19]Li, M., Hamouda, W., 2007. An adptive multiuser detector for DS-CDMA systems in multipath fading channels. Int. J. Commun. Syst., 20(11):1299-1313.
[20]Li, Y., Vucetic, B., Zhou, Z., et al., 2007. Distributed adaptive power allocation for wireless relay networks. IEEE Trans. Wirel. Commun., 6(3):948-958.
[21]Liu, G., Xu, B., Chen, H., 2012. Decentralized estimation over noisy channels in cluster-based wireless sensor networks. Int. J. Commun. Syst., 25(10):1313-1329.
[22]Niesen, U., Shah, D., Wornell, G.W., 2009. Adaptive alternating minimization algorithms. IEEE Trans. Inform. Theory, 55(3):1423-1429.
[23]Rui, X., 2010. Decode-and-forward with partial relay selection. Int. J. Commun. Syst., 23(11):1443-1448.
[24]Silerman, B., 1996. Density Estimation. Chapman Hall, London, UK.
[25]Souryal, M.R., Vojcic, B.R., Pickholtz, R.L., 2006. Adaptive modulation in ad hoc DS/CDMA packet radio networks. IEEE Trans. Commun., 54(4):714-725.
[26]Straeter, T.A., 1971. On the Extension of the Davidon-Broyden Class of Rank One, Quasi-Newton Minimization Methods to an Infinite Dimensional Hilbert Space with Applications to Optimal Control Problems. North Carolina State University at Raleigh.
[27]Verdu, S., 1998. Multiuser Detection. Cambridge University Press, USA.
[28]Wang, T., de Lamare, R.C., Schmeink, A., 2012. Joint linear receiver design and power allocation using alternating optimization algorithms for wireless sensor networks. IEEE Trans. Veh. Technol., 61(9):4129-4141.
[29]Wang, X., Lu, W., Antomiou, A., 2000. Constrained minimum-BER multiuser detection. IEEE Trans. Signal Process., 48(10):2903-2909.
[30]Wang, Y., Shi, P., Li, K., et al., 2012. An energy efficient medium access control protocol for target tracking based on dynamic convey tree collaboration in wireless sensor networks. Int. J. Commun. Syst., 25(9):1139-1159.
Open peer comments: Debate/Discuss/Question/Opinion
<1>