[1]Anderson TE, Canini M, Kim J, et al., 2019. Assise: performance and availability via NVM colocation in a distributed file system. https://arxiv.org/abs/1910.05106
[2]Chen YM, Lu YY, Zhu BH, et al., 2021. Scalable persistent memory file system with kernel-userspace collaboration. Proc 19th USENIX Conf on File and Storage Technologies, p.81-95.
[3]Condit J, Nightingale EB, Frost C, et al., 2009. Better I/O through byte-addressable, persistent memory. Proc ACM SIGOPS 22nd Symp on Operating Systems Principles, p.133-146.
[4]Gray C, Cheriton D, 1989. Leases: an efficient fault-tolerant mechanism for distributed file cache consistency. ACM SIGOPS Oper Syst Rev, 23(5):202-210.
[5]Kim J, Jang I, Reda W, et al., 2021. LineFS: efficient SmartNIC offload of a distributed file system with pipeline parallelism. Proc ACM SIGOPS 28th Symp on Operating Systems Principles, p.756-771.
[6]Lee C, Sim D, Hwang JY, et al., 2015. F2FS: a new file system for flash storage. Proc 13th USENIX Conf on File and Storage Technologies, p.273-286.
[7]Li JR, Lu YY, Wang Q, et al., 2022. AlNiCo: SmartNIC-accelerated contention-aware request scheduling for transaction processing. Proc USENIX Annual Technical Conf, p.951-966.
[8]Liang Z, Lombardi J, Chaarawi M, et al., 2020. DAOS: a scale-out high performance storage stack for storage class memory. Proc 6th Asian Conf on Supercomputing Frontiers, p.40-54.
[9]Lu YY, Shu JW, Zheng WM, 2013. Extending the lifetime of flash-based storage through reducing write amplification from file systems. Proc 11th USENIX Conf on File and Storage Technologies, p.257-270.
[10]Lu YY, Shu JW, Wang W, 2014. ReconFS: a reconstructable file system on flash storage. Proc 12th USENIX Conf on File and Storage Technologies, p.75-88.
[11]Lu YY, Shu JW, Chen YM, et al., 2017. Octopus: an RDMA-enabled distributed persistent memory file system. Proc USENIX Annual Technical Conf, p.773-785.
[12]Lu YY, Shu JW, Zhang JC, 2019. Mitigating synchronous I/O overhead in file systems on open-channel SSDs. ACM Trans Stor, 15(3):17.
[13]NVIDIA, 2022. DOCA. https://developer.nvidia.com/networking/doca [Accessed on Oct. 8, 2022].
[14]Ou JX, Shu JW, Lu YY, 2016. A high performance file system for non-volatile main memory. Proc 11th European Conf on Computer Systems, Article 12.
[15]Schuh HN, Liang WH, Liu M, et al., 2021. Xenic: SmartNIC-accelerated distributed transactions. Proc ACM SIGOPS 28th Symp on Operating Systems Principles, p.740-755.
[16]Xu J, Swanson S, 2016. NOVA: a log-structured file system for hybrid volatile/non-volatile main memories. Proc 14th USENIX Conf on File and Storage Technologies, p.323-338.
[17]Zhang JC, Shu JW, Lu YY, 2016. ParaFS: a log-structured file system to exploit the internal parallelism of flash devices. Proc USENIX Annual Technical Conf, p.87-100.
Open peer comments: Debate/Discuss/Question/Opinion
<1>