[1] Aigner, D.J., Chu, S.F., 1968. On estimating the industry production function. Am. Econ. Rev., 58(4):826-839.
[2] Aigner, D., Lovell, K., Schmidt, P., 1977. Formulation and estimation of stochastic frontier models. J. Econ., 6(1):21-37.
[3] Battese, G., Coelli, T., 1995. A model for technical efficiency effects in a stochastic frontier production function for panel data. Emp. Econ., 20(2):325-332.
[4] Charnes, A., Cooper, W.W., Rhodes, E., 1978. Measuring the efficiency of decision making units. Eur. J. Oper. Res., 2(6):429-444.
[5] Charnes, A., Cooper, W.W., Lewin, A.Y., Seiford, L.M. (Eds.), 1994. Categorical Inputs and Outputs, Section 3.3. In: Data Envelopment Analysis: Theory, Methodology, and Applications. Kluwer Academic Publishers, Boston/ Dordrecht/London, p.52-54.
[6] Coelli, T., Perelman, S., 1996. Efficiency Measurement, Multiple-output Technologies and Distance Functions: With Application to European Railways. CREPP Working Paper, University of Liege, Liege, Wallonia, Belgium.
[7] Coelli, T., Perelman, S., 1999. A comparison of parametric and non-parametric distance functions: with application to European railways. Eur. J. Oper. Res., 117(2):326-339.
[8] Coelli, T., Perelman, S., 2000. Technical efficiency of European railways: a distance function approach. Appl. Econ., 32(15):1967-1976.
[9] Daraio, C., Simar, L., 2005. Introducing environmental variables in nonparametric frontier models: a probabilistic approach. J. Prod. Anal., 24(1):93-121.
[10] Daraio, C., Simar, L., 2007. Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach. J. Prod. Anal., 28(1-2):13-32.
[11] Fare, R., Grosskopf, S., Lovell, C.A.K., Yaisawarng, S., 1993. Derivation of shadow prices for undesirable outputs: a distance function approach. Rev. Econ. Stat., 75(2):374-380.
[12] Fecher, F., Kessler, D., Perelman, S., Pestieau, P., 1993. Productive performance of the French insurance industry. J. Prod. Anal., 4(1-2):77-93.
[13] Ferrier, G.D., Lovell, C.A.K., 1990. Measuring cost efficiency in banking: econometric and linear programming evidence. J. Econ., 46(1-2):229-245.
[14] Grosskopf, S., Hayes, K., Taylor, L., Weber, W., 1997. Budget constrained frontier measurement of fiscal equality and efficiency in schooling. Rev. Econ. Stat., 79(1):116-124.
[15] Huang, T.H., Wang, M.H., 2002. Comparison of economic efficiency estimation methods: parametric and non-parametric techniques. The Manchester School, 70(5):682-709.
[16] Kopp, R., Smith, V., 1980. Frontier production function estimates for steam electric generation: a comparative analysis. South. Econ. J., 46(4):1049-1059.
[17] Lothgren, M., 1997. Generalized stochastic frontier production models. Econ. Lett., 57(3):255-259.
[18] Lothgren, M., 2000. Specification and estimation of stochastic multiple-output production and technical inefficiency. Appl. Econ., 32(12):1533-1540.
[19] Lovell, C.A.K., Richardson, S., Travers, P., Wood, L.L., 1994. Resources and Functionings: A New View of Inequality in Australia. In: Eichhorn, W. (Ed.), Models and Measurement of Welfare and Inequality. Springer-Verlag, Berlin, p.787-807.
[20] Ruggiero, J., 2007. A comparison of DEA and the stochastic frontier model using panel data. Int. Trans. Oper. Res., 14(3):259-266.
[21] Sharma, K.R., Leung, P., Zaleski, H.M., 1997. Productive efficiency of the swine industry in Hawaii: stochastic frontier vs. data envelopment analysis. J. Prod. Anal., 8(4):447-459.
Open peer comments: Debate/Discuss/Question/Opinion
<1>