Full Text:   <3762>

Summary:  <2198>

Suppl. Mater.: 

CLC number: S609.9

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-01-16

Cited: 6

Clicked: 9750

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.2 P.173-180

http://doi.org/10.1631/jzus.B1300186


In vitro antioxidant activity and potential inhibitory action against α-glucosidase of polysacchaides from fruit peel of tea (Camellia sinensis L.)* #


Author(s):  Yue-fei Wang1,2, Jie Wang1, Jing Wu1, Ping Xu1,2, Yi-qi Wang3, Jun-jie Gao1, Danielle Hochstetter1

Affiliation(s):  1. Department of Tea Science, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   zdxp@zju.edu.cn

Key Words:  Polysaccharides, Tea (Camellia sinensis L.) fruit peel, Physicochemical properties, Antioxidant activity, &alpha, -Glucosidase inhibition


Yue-fei Wang, Jie Wang, Jing Wu, Ping Xu, Yi-qi Wang, Jun-jie Gao, Danielle Hochstetter. In vitro antioxidant activity and potential inhibitory action against α-glucosidase of polysaccharides from fruit peel of tea (Camellia sinensis L.)[J]. Journal of Zhejiang University Science B, 2014, 15(2): 173-180.

@article{title="In vitro antioxidant activity and potential inhibitory action against α-glucosidase of polysaccharides from fruit peel of tea (Camellia sinensis L.)",
author="Yue-fei Wang, Jie Wang, Jing Wu, Ping Xu, Yi-qi Wang, Jun-jie Gao, Danielle Hochstetter",
journal="Journal of Zhejiang University Science B",
volume="15",
number="2",
pages="173-180",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300186"
}

%0 Journal Article
%T In vitro antioxidant activity and potential inhibitory action against α-glucosidase of polysaccharides from fruit peel of tea (Camellia sinensis L.)
%A Yue-fei Wang
%A Jie Wang
%A Jing Wu
%A Ping Xu
%A Yi-qi Wang
%A Jun-jie Gao
%A Danielle Hochstetter
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 2
%P 173-180
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300186

TY - JOUR
T1 - In vitro antioxidant activity and potential inhibitory action against α-glucosidase of polysaccharides from fruit peel of tea (Camellia sinensis L.)
A1 - Yue-fei Wang
A1 - Jie Wang
A1 - Jing Wu
A1 - Ping Xu
A1 - Yi-qi Wang
A1 - Jun-jie Gao
A1 - Danielle Hochstetter
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 2
SP - 173
EP - 180
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300186


Abstract: 
The conditions for extracting polysaccharides from tea (Camellia sinensis L.) fruit peel (TFPPs) were studied. Three parameters (temperature, time, and liquid/solid ratio) affecting the extraction of TFPP were optimized using response surface methodology (RSM). Under the optimized conditions, the yield of TFPP was predicted to be 4.98%. The physicochemical properties, in vitro antioxidant activities, and inhibitory effects on &alpha;-glucosidase of fractionated TFPPs (TFPP-0, TFPP-20, TFPP-40, and TFPP-60) were investigated. We found that the TFPPs were all acid protein-bound heteropolysaccharides, although with different chemical compositions. They had not only remarkable scavenging activity on 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and reducing activity, but also excellent inhibitory potential against &alpha;-glucosidase in vitro. Our results suggest that tea fruit peel could be treated as a potential bioresource for the development of polysaccharide antioxidants.

茶果皮多糖理化性质、体外抗氧化活性及对α-葡萄糖苷酶的抑制作用

研究目的:利用响应面优化茶果皮多糖(TFPP)提取条件,用乙醇分级分段得到4个多糖组分(TFPP-0、TFPP-20、TFPP-40和TFPP-60),并研究其理化性质、抗氧化活性和对α-葡萄糖苷酶抑制作用,为综合高效利用茶果皮多糖资源提供理论基础。
创新要点:1. 首次将茶果皮作为一种潜在生物资源研究;2. 首次研究茶果皮多糖这一功能成分;3. 将工艺优化、理化性质和生物活性结合研究。
研究方法:三因素三水平响应面设计(见表1),傅里叶转换红外光谱法分析茶果皮粗多糖的功能团结构(见图3),高效液相色谱法检测单糖组分(见表2),2,2′-氨基-二(3-乙基-苯并噻唑啉-6-磺酸)二铵盐(ABTS)自由基清除法(见图 4a)和铁离子还原能力法(FRAP)(见图4b)分析茶果皮多糖抗氧化活性。
重要结论:1. 茶果皮多糖是一种水溶性的酸性杂多糖蛋白复合物;2. 乙醇分级是一种有效多糖分离手段;3. 茶果皮多糖具有出色的生物活性;4. 茶果皮资源可以作为一种可再生生物资源进行深度的开发。

关键词:茶果皮;多糖;响应面;抗氧化;α-葡萄糖苷酶抑制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Apostolidis, E., Lee, C., 2010.  In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated α-glucosidase and α-amylase inhibition. J Food Sci, 75(3):H97-H102. 


[2] Ballard, T.S., Mallikarjunan, P., Zhou, K., 2009. Optimizing the extraction of phenolic antioxidants from peanut skins using response surface methodology. J Agric Food Chem, 57(8):3064-3072. 


[3] Benzie, I.F.F., Strain, J.J., 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth Enzymol, 299:15-27. 


[4] Cai, Y., Luo, Q., Sun, M., 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci, 74(17):2157-2184. 


[5] am, M., Aaby, K., 2010. Optimization of extraction of apple pomace phenolics with water by response surface methodology. J Agric Food Chem, 58(16):9103-9111. 


[6] Chen, H.X., Zhang, M., Qu, Z.S., 2008. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia sinensis). Food Chem, 106(2):559-563. 


[7] Chen, Y.G., Shen, Z.J., Chen, X.P., 2009. Evaluation of free radicals scavenging and immunity-modulatory activities of Purslane polysaccharides. Int J Biol Macromol, 45(5):448-452. 


[8] Corrales, M., Garca, A.F., Butz, P., 2009. Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J Food Eng, 90(4):415-421. 


[9] Ding, X., Tang, J., Cao, M., 2010. Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Tricholoma matsutakeInt J Biol Macromol, 47(2):271-275. 


[10] Finkel, T., Holbrook, N.J., 2000. Oxidants, oxidative stress and the biology of ageing. Nature, 408:239-247. 


[11] Grice, H.C., 1988. Safety evaluation of butylated hydroxyanisole from the perspective of effects on forestomach and oesophageal squamous epithelium. Food Chem Toxicol, 26(8):717-723. 


[12] Huang, S.S., Huang, G.J., Ho, Y.L., 2008. Antioxidant and antiproliferative activities of the four Hydrocotyle species from Taiwan. Bot Stud, 49(4):311-322. 

[13] Jiang, C.X., Wang, M.C., Liu, J., 2011. Extraction, preliminary characterization, antioxidant and anticancer activities in vitro of polysaccharides from Cyclina sinensisCarbohyd Polym, 84(3):851-857. 


[14] Kaviarasan, S., Naik, G.H., Gangabhagirathi, R., 2007.  In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem, 103(1):31-37. 


[15] Kim, J.S., Kwon, Y.S., Chun, W.J., 2010.  Rhus verniciflua Stokes flavonoid extracts have anti-oxidant, anti-microbial and α-glucosidase inhibitory effect. Food Chem, 120(2):539-543. 


[16] Krentz, A.J., Bailey, C.J., 2005. Oral antidiabetic agents. Drugs, 65(3):385-411. 


[17] Kwon, Y.I., Apostolidis, E., Shetty, K., 2008.  In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresour Technol, 99(8):2981-2988. 


[18] Lin, C.L., Wang, C.C., Chang, S.C., 2009. Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. Int J Biol Macromol, 45(2):146-151. 


[19] Ma, X.F., Li, H.Y., Wang, F., 2011. Separation process and nutrient value analysis of sea buckthom. Acad Period Farm Prod Process, (in Chinese),(2):43-45. 


[20] Morris, D.L., 1948. Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science, 107(2775):254-255. 


[21] Moskovitz, J., Yim, M.B., Chock, P.B., 2002. Free radicals and disease. Arch Biochem Biophys, 397(2):354-359. 


[22] Muralidhar, R.V., Chirumamila, R.R., Marchant, R., 2001. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem Eng J, 9(1):17-23. 


[23] Pratic, D., Delanty, N., 2000. Oxidative injury in diseases of the central nervous system: focus on Alzheimer’s disease. Am J Med, 109(7):577-585. 


[24] Qian, J.Y., Chen, W., Zhang, W.M., 2009. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: a primary approach. Carbohyd Polym, 78(3):620-625. 


[25] Rains, J.L., Jain, S.K., 2011. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med, 50(5):567-575. 


[26] Shen, J.F., Kang, H.Q., Chen, Y.Q., 2010. Polysaccharides from fruit shell of Camellia oleifera Abel: extraction and antioxidation activity. J Chin Cereals Oils Assoc, (in Chinese),25(8):51-54. 

[27] Shi, J., Nawaz, H., Pohorly, J., 2005. Extraction of polyphenolics from plant material for functional foods—engineering and technology. Food Rev Int, 21(1):139-166. 


[28] Shi, J.Y., Gong, J.Y., Liu, J.E., 2009. Antioxidant capacity of extract from edible flowers of Prunus mume in China and its active components. LWT-Food Sci Technol, 42(2):477-482. 


[29] Shibano, M., Kakutani, K., Taniguchi, M., 2008. Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity. J Nat Med, 62(3):349-353. 


[30] Srivastava, R., Kulshreshtha, D.K., 1989. Bioactive polysaccharides from plants. Phytochemistry, 28(11):2877-2883. 


[31] Tian, L.M., Zhao, Y., Guo, C., 2011. A comparative study on the antioxidant activities of an acidic polysaccharide and various solvent extracts derived from herbal Houttuynia cordataCarbohyd Polym, 83(2):537-544. 


[32] Wang, Y., Bian, X., Park, J., 2011. Physicochemical properties, in vitro antioxidant activities and inhibitory potential against α-glucosidase of polysaccharides from Ampelopsis grossedentata leaves and stems. Molecules, 16(9):7762-7772. 


[33] Wang, Y.F., Huang, S.R., Shao, S.H., 2012. Studies on bioactivities of tea (Camellia sinensis L.) fruit peel extracts: antioxidant activity and inhibitory potential against α-glucosidase and α-amylase in vitroInd Crops Prod, 37(1):520-526. 


[34] Xu, P., Bao, J., Gao, J., 2012. Optimization of extraction of phenolic antioxidants from tea (Camellia sinensis L.) fruit peel biomass using response surface methodology. BioResources, 7(2):2431-2443. 

[35] Xu, W.T., Zhang, F.F., Luo, Y.B., 2009. Antioxidant activity of a water-soluble polysaccharide purified from Pteridium aquilinumCarbohyd Res, 344(2):217-222. 


[36] Yang, X.M., Yu, W., Ou, Z.P., 2009. Antioxidant and immunity activity of water extract and crude polysaccharide from Ficus carica L. fruit. Plant Food Hum Nutr, 64(2):167-173. 


[37] Ye, C.L., Hu, W.L., Dai, D.H., 2011. Extraction of polysaccharides and the antioxidant activity from the seeds of Plantago asiatica L. Int J Biol Macromol, 49(4):466-470. 


[38] Zhu, K.X., Nie, S.P., Li, C., 2013. A newly identified polysaccharide from Ganoderma atrum attenuates hyperglycemia and hyperlipidemia. Int J Biol Macromol, 57:142-150. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE