Full Text:   <2142>

Summary:  <107>

CLC number: 

On-line Access: 2025-06-23

Received: 2024-07-07

Revision Accepted: 2024-09-01

Crosschecked: 2025-09-23

Cited: 0

Clicked: 2232

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Changcan SHI

https://orcid.org/0000-0003-2416-6278

Feng ZHANG

https://orcid.org/0000-0001-6206-5537

Weidong LI

https://orcid.org/0000-0002-7664-1512

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.9 P.863-880

http://doi.org/10.1631/jzus.B2400340


Three-dimensional (3D) printing-assisted freeze-casting of processed pyritum-doped β-tricalcium phosphate biomimetic scaffold with angiogenesis and bone regeneration capability


Author(s):  Chenxu WEI, Zongan LI, Xiaoyun LIANG, Yuwei ZHAO, Xingyu ZHU, Haibing HUA, Guobao CHEN, Kunming QIN, Zhipeng CHEN, Changcan SHI, Feng ZHANG, Weidong LI

Affiliation(s):  School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing210023,China; more

Corresponding email(s):   cshi@njucm.edu.cn, fengzhan@njnu.edu.cn, liweidong0801@njucm.edu.cn

Key Words:  Bone defect, Processed pyritum, Three-dimensional (3D) printing-assisted freeze-casting, Angiogenesis, Bone regeneration, VEGF-Notch1-BMP-2-OPN coupling


Chenxu WEI, Zongan LI, Xiaoyun LIANG, Yuwei ZHAO, Xingyu ZHU, Haibing HUA, Guobao CHEN, Kunming QIN, Zhipeng CHEN, Changcan SHI, Feng ZHANG, Weidong LI. Three-dimensional (3D) printing-assisted freeze-casting of processed pyritum-doped β-tricalcium phosphate biomimetic scaffold with angiogenesis and bone regeneration capability[J]. Journal of Zhejiang University Science B, 2025, 26(9): 863-880.

@article{title="Three-dimensional (3D) printing-assisted freeze-casting of processed pyritum-doped β-tricalcium phosphate biomimetic scaffold with angiogenesis and bone regeneration capability",
author="Chenxu WEI, Zongan LI, Xiaoyun LIANG, Yuwei ZHAO, Xingyu ZHU, Haibing HUA, Guobao CHEN, Kunming QIN, Zhipeng CHEN, Changcan SHI, Feng ZHANG, Weidong LI",
journal="Journal of Zhejiang University Science B",
volume="26",
number="9",
pages="863-880",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2400340"
}

%0 Journal Article
%T Three-dimensional (3D) printing-assisted freeze-casting of processed pyritum-doped β-tricalcium phosphate biomimetic scaffold with angiogenesis and bone regeneration capability
%A Chenxu WEI
%A Zongan LI
%A Xiaoyun LIANG
%A Yuwei ZHAO
%A Xingyu ZHU
%A Haibing HUA
%A Guobao CHEN
%A Kunming QIN
%A Zhipeng CHEN
%A Changcan SHI
%A Feng ZHANG
%A Weidong LI
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 9
%P 863-880
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2400340

TY - JOUR
T1 - Three-dimensional (3D) printing-assisted freeze-casting of processed pyritum-doped β-tricalcium phosphate biomimetic scaffold with angiogenesis and bone regeneration capability
A1 - Chenxu WEI
A1 - Zongan LI
A1 - Xiaoyun LIANG
A1 - Yuwei ZHAO
A1 - Xingyu ZHU
A1 - Haibing HUA
A1 - Guobao CHEN
A1 - Kunming QIN
A1 - Zhipeng CHEN
A1 - Changcan SHI
A1 - Feng ZHANG
A1 - Weidong LI
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 9
SP - 863
EP - 880
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2400340


Abstract: 
Bone repair remains an important target in tissue engineering, making the development of bioactive scaffolds for effective bone defect repair a critical objective. In this study, β-tricalcium phosphate (β-TCP) scaffolds incorporated with processed pyritum decoction (PPD) were fabricated using three-dimensional (3D) printing-assisted freeze-casting. The produced composite scaffolds were evaluated for their mechanical strength, physicochemical properties, biocompatibility, in vitro pro-angiogenic activity, and in vivo efficacy in repairing rabbit femoral defects. They not only demonstrated excellent physicochemical properties, enhanced mechanical strength, and good biosafety but also significantly promoted the proliferation, migration, and aggregation of pro-angiogenic human umbilical vein endothelial cells (HUVECs). In vivo studies revealed that all scaffold groups facilitated osteogenesis at the bone defect site, with the β-TCP scaffolds loaded with PPD markedly enhancing the expression of neurogenic locus Notch homolog protein 1 (Notch1), vascular endothelial growth factor (VEGF), bone morphogenetic protein-2 (BMP-2), and osteopontin (OPN). Overall, the scaffolds developed in this study exhibited strong angiogenic and osteogenic capabilities both in vitro and in vivo. The incorporation of PPD notably promoted the angiogenic-osteogenic coupling, thereby accelerating bone repair, which suggests that PPD is a promising material for bone repair and that the PPD/β-TCP scaffolds hold great potential as a bone graft alternative.

冷冻铸造3D打印技术制备有促进血管生成和成骨再生能力的载煅自然铜/β-磷酸三钙仿生支架

魏晨旭1,2,4, 李宗安3, 梁潇云5, 赵雨薇1,2, 朱星宇1,2, 花海兵4, 陈国宝4, 秦昆明6, 陈志鹏1,2, 史长灿1,2, 张锋3, 李伟东1,2
1南京中医药大学药学院,中国南京市,210023
2南京中医药大学,江苏省中药炮制重点实验室/国家教育部中药炮制规范化及标准化工程研究中心,中国南京市,210023
3南京师范大学,电气与自动化工程学院,江苏省三维打印装备与制造重点实验室,中国南京市,210023
4南京中医药大学江阴附属医院,中国江阴市,214400
5长春中医药大学药学院,中国长春市,130117
6江苏海洋大学药学院,中国连云港市,222005
摘要:骨缺损修复作为组织工程学中一个重要的研究方向,开发可有效修复骨缺损的生物活性支架是其关键性目标。本研究采用冷冻铸造3D打印技术制备了负载煅自然铜水煎液(PPD)的β-磷酸三钙(β-TCP)复合支架,并对复合支架的机械强度、理化性质、生物相容性、体外促血管生成活性以及体内修复兔股骨缺损药效机制进行了研究。体外实验结果显示:复合支架不仅表现出优异的理化特性、更强的机械强度和良好的生物安全性,还能显著促进促血管生成细胞人脐静脉内皮细胞的增殖、迁移和聚集。体内实验结果表明:所有支架组均能促进骨缺损部位的成骨再生;其中,负载PPD的β-TCP支架可显著提高神经源性基因座Notch1蛋白(Notch1)、血管内皮生长因子(VEGF)、骨形态发生蛋白-2(BMP-2)和骨桥蛋白(OPN)的表达。综上,本研究开发制备的支架在体外和体内均表现出显著的血管再生和成骨能力。PPD的加入显著促进了血管生成-成骨耦合,并加速了骨修复。这表明PPD是一种具有广阔应用前景的骨修复材料,且PPD/β-TCP支架拥有作为骨移植替代材料的巨大潜力。

关键词:骨缺损;煅自然铜;冷冻铸造3D打印;血管生成;骨再生;VEGF-Notch1-BMP-2-OPN耦联

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ArahiraT,TodoM,2016.Variation of mechanical behavior of β-TCP/collagen two phase composite scaffold with mesenchymal stem cell in vitro.J Mech Behav Biomed Mater,61:464-474.

[2]BaiL,SongPR,SuJC,2023.Bioactive elements manipulate bone regeneration.Biomater Transl,4(4):248-269.

[3]BohnerM,SantoniBLG,DöbelinN,2020.β-Tricalcium phosphate for bone substitution: synthesis and properties.Acta Biomater,113:23-41.

[4]ChenJ,LiYW,LiuSB,et al.,2022.Freeze-casting osteochondral scaffolds: the presence of a nutrient-permeable film between the bone and cartilage defect reduces cartilage regeneration.Acta Biomater,154:168-179.

[5]ChengQF,HuangCJ,TomsiaAP,2017.Freeze casting for assembling bioinspired structural materials.Adv Mater,29(45):1703155.

[6]DaiZY,LiY,YanYG,et al.,2018.Evaluation of the internal fixation effect of nano-calcium-deficient hydroxyapatite/poly-amino acid composite screws for intraarticular fractures in rabbits.Int J Nanomedicine,13:6625-6636.

[7]DevilleS,TomsiaAP,MeilleS,2022.Complex composites built through freezing.Acc Chem Res,55(11):1492-1502.

[8]DuSR,HuynhT,LuYZ,et al.,2024.Bioactive polymer composite scaffolds fabricated from 3D printed negative molds enable bone formation and vascularization.Acta Biomater,186:260-274.

[9]DongJ,LinP,PutraNE,et al.,2022.Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds.Acta Biomater,151:628-646.

[10]GiannoudisPV,DinopoulosH,TsiridisE,2005.Bone substitutes: an update.Injury,36(3):S20-S27.

[11]GrossoA,LungerA,BurgerMG,et al.,2023.VEGF dose controls the coupling of angiogenesis and osteogenesis in engineered bone.NPJ Regen Med,8:15-30.

[12]GuoJW,WangFX,HuY,et al.,2023.Exosome-based bone-targeting drug delivery alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel diseases.Cell Rep Med,4:100881.

[13]GuoY,ChenCL,ZhangSY,et al.,2022.Mediation of mechanically adapted TiCu/TiCuN/CFR-PEEK implants in vascular regeneration to promote bone repair in vitro and in vivo.J Orthop Translat,33:107-119.

[14]HaoSY,WangMK,YinZF,et al.,2023.Microenvironment-targeted strategy steers advanced bone regeneration.Mater Today Bio,22:100741.

[15]HernigouP,DuboryA,PariatJ,et al.,2017.Beta-tricalcium phosphate for orthopedic reconstructions as an alternative to autogenous bone graft.Morphologie,101(334):173-179.

[16]JoshiMK,LeeS,TiwariAP,et al.,2020.Integrated design and fabrication strategies for biomechanically and biologically functional PLA/β-TCP nanofiber reinforced GelMA scaffold for tissue engineering applications.Int J Biol Macromol,164:976-985.

[17]KathuriaN,TripathiA,KarKK,et al.,2009.Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering.Acta Biomater,5:406-418.

[18]LeeDS,PaiY,ChangS,et al.,2016.Microstructure, physical properties, and bone regeneration effect of the nano-sized β-tricalcium phosphate granules.Mater Sci Eng C Mater Biol Appl,58:971-976.

[19]LeeKG,LeeKS,KangYJ,et al.,2018.Rabbit calvarial defect model for customized 3D-printed bone grafts.Tissue Eng Part C Methods,24(5):255-262.

[20]LiM,DaiXG,WangMN,et al.,2024.Bioinspired macroporous materials of MXene nanosheets: ice-templated assembly and multifunctional applications.Small Methods,8(4):e2300213.

[21]LiYL,HeJ,YeHX,et al.,2022.Atomic layer deposition of zinc oxide onto 3D porous iron scaffolds for bone repair: in vitro degradation, antibacterial activity and cytocompatibility evaluation.Rare Met,41:546-558.

[22]LiZW,DuTM,RuanCS,et al.,2020.Bioinspired mineralized collagen scaffolds for bone tissue engineering.Bioact Mater,6(5):1491-1511.

[23]LiuL,ZhaoGH,GaoQQ,et al.,2017.Changes of mineralogical characteristics and osteoblast activities of raw and processed pyrites.RSC Adv,7:28373-28382.

[24]LiuXF,GaihreB,ParkS,et al.,2023.3D-printed scaffolds with 2D hetero-nanostructures and immunomodulatory cytokines provide pro-healing microenvironment for enhanced bone regeneration.Bioact Mater,27:216-230.

[25]MaazouzY,RentschI,LuB,et al.,2020.In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes.Acta Biomater,102:440-457.

[26]PutraNE,BorgKGN,Diaz-PaynoPJ,et al.,2022.Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration.Acta Biomater,148:355-373.

[27]PutraNE,LeeflangMA,KlimopoulouM,et al.,2023.Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes.Acta Biomater,162:182-198.

[28]QiL,ZhaoT,YanJG,et al.,2024.Advances in magnesium-containing bioceramics for bone repair.Biomater Transl,5(1):3-20.

[29]QiaoW,WongKHM,ShenJ,et al.,2021.TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration.Nat Commun,12:2885.

[30]QinY,WenP,GuoH,et al.,2019.Additive manufacturing of biodegradable metals: current research status and future perspectives.Acta Biomater,98:3-22.

[31]QinY,YangHT,LiuAB,et al.,2022a.Processing optimization, mechanical properties, corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals.Acta Biomater,142:388-401.

[32]QinY,LiuAB,GuoH,et al.,2022b.Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: in vitro and in vivo studies.Acta Biomater,145:403-415.

[33]SalamancaE,PanYH,SunYS,et al.,2022.Magnesium modified β-tricalcium phosphate induces cell osteogenic differentiation in vitro and bone regeneration in vivo.Int J Mol Sci,23(3):1717-1734.

[34]SeidenstueckerM,KerrL,BernsteinA,et al.,2017.3D powder printed bioglass and β-tricalcium phosphate bone scaffolds.Materials,11:13-33.

[35]ShaoGF,HanaorDAH,ShenXD,et al.,2020.Freeze casting: from low-dimensional building blocks to aligned porous structures—a review of novel materials, methods, and applications.Adv Mater,32(17):e1907176.

[36]ShiCC,YuYT,WuHJ,et al.,2023.A graphene oxide-loaded processed pyritum composite hydrogel for accelerated bone regeneration via mediation of M2 macrophage polarization.Mater Today Bio,22:100753.

[37]TaoZW,YuanZY,ZhouD,et al.,2023.Fabrication of magnesium-doped porous polylactic acid microsphere for bone regeneration.Biomater Transl,4(4):280-290.

[38]WangC,XueY,LinKL,et al.,2012.The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.Acta Biomater,8:350-360.

[39]WangD,HouJX,XiaCJ,et al.,2021.Multi-element processed pyritum mixed to β-tricalcium phosphate to obtain a 3D-printed porous scaffold: an option for treatment of bone defects.Mater Sci Eng C Mater Biol Appl,128:112326.

[40]WangJ,WuY,LiGF,et al.,2024.Engineering large-scale self-mineralizing bone organoids with bone matrix-inspired hydroxyapatite hybrid bioinks.Adv Mater,36(30):e2309875.

[41]WangTC,LiWT,ZhangYX,et al.,2023.Bioprinted constructs that simulate nerve-bone crosstalk to improve microenvironment for bone repair.Bioact Mater,27:377-393.

[42]WangZ,GuoZ,BaiH,et al.,2013.Clinical evaluation of β-TCP in the treatment of lacunar bone defects: a prospective, randomized controlled study.Mater Sci Eng C Mater Biol Appl,33(4):1894-1899.

[43]WangZ,WangYC,YanJQ,et al.,2021.Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.Adv Drug Deliv Rev,174:504-534.

[44]WangZG,LiuBC,YinBZ,et al.,2022.Comprehensive review of additively manufactured biodegradable magnesium implants for repairing bone defects from biomechanical and biodegradable perspectives.Front Chem,10:1066103.

[45]WangZH,HuiAP,ZhaoHB,et al.,2020.A novel 3-bioprinted porous nano attapulgite scaffolds with good performance for bone regeneration.Int J Nanomedicine,15:6945-6960.

[46]WuYH,LiuPX,FengC,et al.,2024.3D printing calcium phosphate ceramics with high osteoinductivity through pore architecture optimization.Acta Biomater,185:111-125.

[47]XuL,XuS,XiangTY,et al.,2023.A novel peptide hydrogel of metal ion clusters for accelerating bone defect regeneration.J Control Release,353:738-751.

[48]YangL,FanL,LinX,et al.,2023.Pearl powder hybrid bioactive scaffolds from microfluidic 3D printing for bone regeneration.Adv Sci,10(34):e2304190.

[49]YazdanianM,TabeshH,HoushmandB,et al.,2020.Fabrication and properties of βTCP/Zeolite/Gelatin scaffold as developed scaffold in bone regeneration:in vitro and in vivo studies.Biocybern Biomed Eng,40(4):1626-1637.

[50]YeXL,ZhangYQ,LiuT,et al.,2022.Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering.Int J Biol Macromol,209(Pt A):1553-1561.

[51]YuW,LiR,LongJ,et al.,2018.Use of a three-dimensional printed polylactide-coglycolide/tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits.J Orthop Translat,16:62-70.

[52]ZhaY,LiYW,LinTY,et al.,2021.Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects.Theranostics,11(1):397-409.

[53]ZhangF,JiaM,WangJH,et al.,2024.Freeze‐casting of arbitrary‐shaped porous ceramics.Adv Eng Mater,26(12):2301984.

[54]ZhangHJ,ZhangM,ZhaiD,et al.,2023.Polyhedron-like biomaterials for innervated and vascularized bone regeneration.Adv Mater,35(42):e2302716.

[55]ZhangL,YangGJ,JohnsonBN,et al.,2019.Three-dimensional (3D) printed scaffold and material selection for bone repair.Acta Biomater,84:16-33.

[56]ZhangYX,LinT,MengHY,et al.,2022.3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo.J Orthop Translat,33:13-23.

[57]ZhangZB,LiuAB,FanJD,et al.,2023.A drug-loaded composite coating to improve osteogenic and antibacterial properties of Zn‒1Mg porous scaffolds as biodegradable bone implants.Bioact Mater,27:488-504.

[58]ZhaoMD,ZhouJ,LiXL,et al.,2011.Repair of bone defect with vascularized tissue engineered bone graft seeded with mesenchymal stem cells in rabbits.Microsurgery,31(2):130-137.

[59]ZhouXM,LiuJ,ZhengYC,et al.,2022.SM22α-lineage niche cells regulate intramembranous bone regeneration via PDGFRβ-triggered hydrogen sulfide production.Cell Rep,39(5):110750.

[60]ZhouYK,HanCS,ZhuZL,et al.,2023.M2 exosomes modified by hydrogen sulfide promoted bone regeneration by moesin mediated endocytosis.Bioact Mater,31:192-205.

[61]ZhuXY,GaoQQ,ZhaoGH,et al.,2018.Comparison study of bone defect healing effect of raw and processed pyritum in rats.Biol Trace Elem Res,184:136-147.

[62]ZhuXY,LiuHJ,MeiCM,et al.,2024.A composite hydrogel loaded with the processed pyritum promotes bone repair via stimulate the osteogenic differentiation of BMSCs.Biomater Adv,160:213848.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE