CLC number: TN27
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-09-04
Cited: 0
Clicked: 5491
Han Zhang, Xue-lei Liang. Bistable electrowetting device with non-planar designed controlling electrodes for display applications[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(9): 1289-1295.
@article{title="Bistable electrowetting device with non-planar designed controlling electrodes for display applications",
author="Han Zhang, Xue-lei Liang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="9",
pages="1289-1295",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800167"
}
%0 Journal Article
%T Bistable electrowetting device with non-planar designed controlling electrodes for display applications
%A Han Zhang
%A Xue-lei Liang
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 9
%P 1289-1295
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800167
TY - JOUR
T1 - Bistable electrowetting device with non-planar designed controlling electrodes for display applications
A1 - Han Zhang
A1 - Xue-lei Liang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 9
SP - 1289
EP - 1295
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800167
Abstract: bistable electrowetting display (EWD) is a promising low-power electronic paper technology, where power is consumed only during the switching between two stable states; however, it is not required for state maintenance once switched. In this paper, a bistable electrowetting device with non-planar designed controlling electrodes is fabricated by a fully conventional photo-lithography process. The device has potential for video display applications with a controllable gray scale. The novel electrode design realizes a lower driving voltage and a higher contrast between two stable states than the EWDs with planar electrodes reported previously.
[1]Bitman A, Bartels F, Rawert J, et al., 2012. Production considerations for bistable droplet driven electrowetting displays. Society for Information Display Int Symp, p.1-4.
[2]Blankenbach K, Schmoll A, Bitman A, et al., 2008. Novel highly reflective and bistable electrowetting displays. J Soc Inform Disp, 16(2):237-244.
[3]Blankenbach K, Jentsch M, Rawert J, et al., 2011. Sunlight readable bistable electrowetting displays for indicators and billboards. Society for Information Display Int Symp, p.1-4.
[4]Brinker CJ, 2013. Dip coating. In: Schneller T, Waser R, Kosec M, et al. (Eds.), Chemical Solution Deposition of Functional Oxide Thin Films. Springer, Vienna, p.233- 261.
[5]Charipar KM, Charipar NA, Bellemare JV, et al., 2015. Electrowetting displays utilizing bistable, multi-color pixels via laser processing. J Disp Technol, 11(2):175- 182.
[6]Chen CY, Wang CY, Wang WC, et al., 2011. A 3.5-inch bendable active matrix electrowetting display. Society for Information Display Int Symp, p.1-4.
[7]Cho SK, Moon H, Kim CJ, 2003. Creating, transporting, cutting, and merging liquid droplets by electrowetting- based actuation for digital microfluidic circuits. J Microelectromech Syst, 12(1):70-80.
[8]Comiskey B, Albert JD, Yoshizawa H, et al., 1998. An electrophoretic ink for all-printed reflective electronic displays. Nature, 394(6690):253-255.
[9]Dai YX, 2008. Design and Operation of TFT LCD Panels. Tsinghua University Press, Beijing, China (in Chinese).
[10]Deng Y, Tang B, Henzen AV, et al., 2017. Recent progress in video electronic paper displays based on electro-fluidic technology. Society for Information Display Int Symp, p.1-4.
[11]Hayes RA, Feenstra BJ, 2003. Video-speed electronic paper based on electrowetting. Nature, 425(6956):383-385.
[12]Heikenfeld J, Zhou K, Kreit E, et al., 2009. Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions. Nat Photon, 3(5):292-296.
[13]Hou L, Smith NR, Heikenfeld J, 2007. Electrowetting manipulation of any optical film. Appl Phys Lett, 90(25): 1-3.
[14]Huh D, Tkaczyk AH, Bahng JH, et al., 2003. Reversible switching of high-speed air-liquid two-phase flows using electrowetting-assisted flow-pattern change. J Am Chem Soc, 125(48):14678-14679.
[15]Jones TB, 2005. An electromechanical interpretation of electrowetting. J Micromech Microeng, 15(6):1184-1187.
[16]Jung HY, Choi UC, Park SH, et al., 2012. Development of driver IC with novel driving method for the electrowetting display. Society for Information Display Int Symp, p.1-4.
[17]Kuiper S, Hendriks BHW, 2004. Variable-focus liquid lens for miniature cameras. Appl Phys Lett, 85(7):1128-1130.
[18]Lao Y, 2008. Ultra-High Transmission Electrowetting Displays. MS Thesis, University of Cincinnati, Cincinnati, USA.
[19]Mugele F, Baret JC, 2005. Electrowetting: from basics to applications. J Phys Condens Matter, 17(28):705-774.
[20]Pollack MG, Shenderov AD, Fair RB, 2002. Electrowetting- based actuation of droplets for integrated microfluidics. Lab Chip, 2(2):96-101.
[21]Rawert J, Jerosch D, Blankenbach K, et al., 2010. Bistable D3 electrowetting display products and applications. Society for Information Display Int Symp, p.1-4.
[22]Shui LL, Hayes RA, Jin ML, et al., 2014. Microfluidics for electronic paper-like displays. Lab Chip, 14(14):2374- 2384.
[23]Smith NR, Abeysinghe DC, Haus JW, et al., 2006. Agile wide-angle beam steering with electrowetting microprisms. Opt Expr, 14(14):6557-6563.
[24]Verheijen HJJ, Prins MWJ, 1999. Reversible electrowetting and trapping of charge: model and experiments. Langmuir, 15(20):6616-6620.
[25]Yang S, Zhou K, Kreit E, et al., 2010. High reflectivity electrofluidic pixels with zero-power grayscale operation. Appl Phys Lett, 97(14):1-3.
[26]You H, Steckl AJ, 2010. Three-color electrowetting display device for electronic paper. Appl Phys Lett, 97(2):1-3.
[27]Zhang H, Yan QP, Xu QY, et al., 2017. A sacrificial layer strategy for photolithography on highly hydrophobic surface and its application for electrowetting devices. Sci Rep, 7(1):1-7.
[28]Zhou K, Heikenfeld J, Dean KA, et al., 2009. A full description of a simple and scalable fabrication process for electrowetting displays. J Micromech Microeng, 19(6):1-12.
Open peer comments: Debate/Discuss/Question/Opinion
<1>