Full Text:   <665>

Summary:  <180>

CLC number: O233

On-line Access: 2023-07-03

Received: 2022-12-04

Revision Accepted: 2023-07-03

Crosschecked: 2023-02-26

Cited: 0

Clicked: 664

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yifeng LI

https://orcid.org/0000-0001-9252-4853

Lan WANG

https://orcid.org/0009-0001-3774-8253

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.6 P.906-915

http://doi.org/10.1631/FITEE.2200618


Controllability of Boolean control networks with multiple time delays in both states and controls


Author(s):  Yifeng LI, Lan WANG

Affiliation(s):  National Center for Applied Mathematics in Chongqing, Chongqing Normal University, Chongqing 401331, China; more

Corresponding email(s):   liyifeng@cqnu.edu.cn, wanglan202212@126.com

Key Words:  Boolean control networks, Semi-tensor product of matrices, Controllability, Time delay


Yifeng LI, Lan WANG. Controllability of Boolean control networks with multiple time delays in both states and controls[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(6): 906-915.

@article{title="Controllability of Boolean control networks with multiple time delays in both states and controls",
author="Yifeng LI, Lan WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="6",
pages="906-915",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200618"
}

%0 Journal Article
%T Controllability of Boolean control networks with multiple time delays in both states and controls
%A Yifeng LI
%A Lan WANG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 6
%P 906-915
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200618

TY - JOUR
T1 - Controllability of Boolean control networks with multiple time delays in both states and controls
A1 - Yifeng LI
A1 - Lan WANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 6
SP - 906
EP - 915
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200618


Abstract: 
In this paper, the problem of controllability of boolean control networks (BCNs) with multiple time delays in both states and controls is investigated. First, the controllability problem of BCNs with multiple time delays in controls is considered. For this controllability problem, a controllability matrix is constructed by defining a new product of matrices, based on which a necessary and sufficient controllability condition is obtained. Then, the controllability of BCNs with multiple time delays in states is studied by giving a necessary and sufficient condition. Subsequently, based on these results, a controllability matrix for BCNs with multiple time delays in both states and controls is proposed that provides a concise controllability condition. Finally, two examples are given to illustrate the main results.

状态和控制均具有多时滞的布尔控制网络可控性

李一峰1,王兰2
1重庆师范大学重庆国家应用数学中心,中国重庆市,401331
2南京师范大学数学科学学院数学系,中国南京市,210023
摘要:本文研究状态和控制均具有多时滞的布尔控制网络可控性问题。首先,考虑控制具有多时滞的布尔控制网络可控性问题。对于该问题,本文通过定义一个新的矩阵乘积构建系统的可控性矩阵,基于该矩阵,得到一个系统可控的充分必要条件。其次,研究状态具有多时滞的布尔控制网络可控性问题,提出一个状态具有多时滞的布尔控制网络可控的充分必要条件。然后,提出一个状态和控制均具有多时滞的布尔控制网络可控性矩阵,利用该矩阵,提供一个简洁的可控性条件。最后,给出2个例子说明得到的理论结果。

关键词:布尔控制网络;矩阵半张量积;能控性;时滞

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Acernese A, Yerudkar A, Glielmo L, et al., 2021. Reinforcement learning approach to feedback stabilization problem of probabilistic Boolean control networks. IEEE Contr Syst Lett, 5(1):337-342.

[2]Albert R, Othmer HG, 2003. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J Theor Biol, 223(1):1-18.

[3]Chaves M, Albert R, Sontag ED, 2005. Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol, 235(3):431-449.

[4]Chen H, Sun JT, 2013. A new approach for global controllability of higher order Boolean control network. Neur Netw, 39:12-17.

[5]Chen HW, Liang JL, Lu JQ, et al., 2018. Synchronization for the realization-dependent probabilistic Boolean networks. IEEE Trans Neur Netw Learn Syst, 29(4):819-831.

[6]Cheng DZ, Qi HS, 2009. Controllability and observability of Boolean control networks. Automatica, 45(7):1659-1667.

[7]Cheng DZ, Qi HS, 2010. A linear representation of dynamics of Boolean networks. IEEE Trans Autom Contr, 55(10):2251-2258.

[8]Cheng DZ, Qi HS, Li ZQ, 2011. Analysis and Control of Boolean Networks: a Semi-Tensor Product Approach. Springer, London, UK.

[9]Cui P, Zhang CH, Zhang HS, et al., 2009. Indefinite linear quadratic optimal control problem for singular discrete-time system with multiple input delays. Automatica, 45(10):2458-2461.

[10]Dauer JP, Gahl RD, 1977. Controllability of nonlinear delay systems. J Optim Theory Appl, 21(1):59-70.

[11]Ding Y, Xie D, Guo YQ, 2018. Controllability of Boolean control networks with multiple time delays. IEEE Trans Contr Netw Syst, 5(4):1787-1795.

[12]Feng JE, Li YL, Fu SH, et al., 2022. New method for disturbance decoupling of Boolean networks. IEEE Trans Autom Contr, 67(9):4794-4800.

[13]Fornasini E, Valcher ME, 2013. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Autom Contr, 58(6):1390-1401.

[14]Fornasini E, Valcher ME, 2014. Optimal control of Boolean control networks. IEEE Trans Autom Contr, 59(5):1258-1270.

[15]Gao SH, Sun CK, Xiang C, et al., 2022. Finite-horizon optimal control of Boolean control networks: a unified graph-theoretical approach. IEEE Trans Neur Netw Learn Syst, 33(1):157-171.

[16]Guo YQ, Shen YW, Gui WH, 2021. Asymptotical stability of logic dynamical systems with random impulsive disturbances. IEEE Trans Autom Contr, 66(2):513-525.

[17]Han M, Liu Y, Tu YS, 2014. Controllability of Boolean control networks with time delays both in states and inputs. Neurocomputing, 129:467-475.

[18]Kauffman SA, 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437-467.

[19]Klamka J, 2019. Stochastic controllability of systems with multiple delays in control. Int J Appl Math Comput Sci, 19(1):39-48.

[20]Klmat S, Saez-Rodriguez J, Lindquist JA, 2006. A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform, 7:56.

[21]Li FF, Sun JT, 2011. Controllability of Boolean control networks with time delays in states. Automatica, 47(3):603-607.

[22]Li FF, Sun JT, 2012. Controllability of higher order Boolean control networks. Appl Math Comput, 219(1):158-169.

[23]Li FF, Sun JT, Wu QD, 2011. Observability of Boolean control networks with state time delays. IEEE Trans Neur Netw, 22(6):948-954.

[24]Li HT, Xie LH, Wang YZ, 2017. Output regulation of Boolean control networks. IEEE Trans Autom Contr, 62(6):2993-2998.

[25]Li HT, Yang XR, Wang SL, 2021. Robustness for stability and stabilization of Boolean networks with stochastic function perturbations. IEEE Trans Autom Contr, 66(3):1231-1237.

[26]Li R, Yang M, Chu TG, 2012. Synchronization of Boolean networks with time delays. Appl Math Comput, 219(3):917-927.

[27]Li R, Yang M, Chu TG, 2013. State feedback stabilization for Boolean control networks. IEEE Trans Autom Contr, 58(7):1853-1857.

[28]Li YF, Zhu JD, 2020. Cascading decomposition of Boolean control networks: a graph-theoretical method. Front Inform Technol Electron Eng, 21(2):304-315.

[29]Li YF, Zhu JD, 2022. Necessary and sufficient vertex partition conditions for input-output decoupling of Boolean control networks. Automatica, 137:110097.

[30]Li YF, Zhu JD, 2023. Observability decomposition of Boolean control networks. IEEE Trans Autom Contr, 68(2):1267-1274.

[31]Li YF, Zhu JD, Li BW, et al., 2021. A necessary and sufficient graphic condition for the original disturbance decoupling of Boolean networks. IEEE Trans Autom Contr, 66(8):3765-3772.

[32]Liang JL, Chen HW, Lam J, 2017. An improved criterion for controllability of Boolean control networks. IEEE Trans Autom Contr, 62(11):6012-6018.

[33]Liu Y, Zhao SW, 2011. Controllability for a class of linear time-varying impulsive systems with time delay in control input. IEEE Trans Autom Contr, 56(2):395-399.

[34]Lu JQ, Zhong J, Ho DWC, et al., 2016. On controllability of delayed Boolean control networks. SIAM J Contr Optim, 54(2):475-494.

[35]Shen YW, Guo YQ, Gui WH, 2021. Stability of Boolean networks with state-dependent random impulses. Front Inform Technol Electron Eng, 22(2):222-231.

[36]Wang WQ, Zhong SM, 2012. Delay-dependent stability criteria for genetic regulatory networks with time-varying delays and nonlinear disturbance. Commun Nonl Sci Numer Simul, 17(9):3597-3611.

[37]Wang ZD, Gao HJ, Cao JD, et al., 2018. On delayed genetic regulatory networks with polytopic uncertainties: robust stability analysis. IEEE Trans Nanobiosci, 7(2):154-163.

[38]Weiss E, Margaliot M, 2019. A polynomial-time algorithm for solving the minimal observability problem in conjunctive Boolean networks. IEEE Trans Autom Contr, 64(7):2727-2736.

[39]Wu YH, Guo YQ, Toyoda M, 2021. Policy iteration approach to the infinite horizon average optimal control of probabilistic Boolean networks. IEEE Trans Neur Netw Learn Syst, 32(7):2910-2924.

[40]Yang P, Xie GM, Wang L, 2009. Controllability of linear discrete-time systems with time-delay in state and control. Int J Contr, 82:1288-1296.

[41]Zhang LJ, Zhang KZ, 2013. Controllability and observability of Boolean control networks with time-variant delays in states. IEEE Trans Neur Netw Learn Syst, 24(9):1478-1484.

[42]Zhang X, Meng M, Wang YH, et al., 2021. Criteria for observability and reconstructibility of Boolean control networks via set controllability. IEEE Trans Circ Syst II, 68(4):1263-1267.

[43]Zhao Y, Qi HS, Cheng DZ, 2010. Input-state incidence matrix of Boolean control networks and its applications. Syst Contr Lett, 59(12):767-774.

[44]Zheng YT, Feng JE, 2020. Output tracking of delayed logical control networks with multi-constraint. Front Inform Technol Electron Eng, 21(2):316-323.

[45]Zhong J, Lu JQ, Liu Y, et al., 2014. Synchronization in an array of output-coupled Boolean networks with time delay. IEEE Trans Neur Netw Learn Syst, 25(12):2288-2294.

[46]Zhong J, Li BW, Liu Y, et al., 2020. Output feedback stabilizer design of Boolean networks based on network structure. Front Inform Technol Electron Eng, 21(2):247-259.

[47]Zhou RP, Guo YQ, Gui WH, 2019. Set reachability and observability of probabilistic Boolean networks. Automatica, 106:230-241.

[48]Zhu QX, Gao ZG, Liu Y, et al., 2021. Categorization problem on controllability of Boolean control networks. IEEE Trans Autom Contr, 66(5):2297-2303.

[49]Zou YL, Zhu JD, 2015. Kalman decomposition for Boolean control networks. Automatica, 54:65-71.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE