CLC number: TN92
On-line Access: 2023-07-03
Received: 2023-03-21
Revision Accepted: 2023-07-03
Crosschecked: 2023-05-15
Cited: 0
Clicked: 1152
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-1485-5849
https://orcid.org/0000-0003-4245-5989
Ping ZHANG, Xiaodong XU, Chen DONG, Kai NIU, Haotai LIANG, Zijian LIANG, Xiaoqi QIN, Mengying SUN, Hao CHEN, Nan MA, Wenjun XU, Guangyu WANG, Xiaofeng TAO. Model division multiple access for semantic communications[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(6): 801-812.
@article{title="Model division multiple access for semantic communications",
author="Ping ZHANG, Xiaodong XU, Chen DONG, Kai NIU, Haotai LIANG, Zijian LIANG, Xiaoqi QIN, Mengying SUN, Hao CHEN, Nan MA, Wenjun XU, Guangyu WANG, Xiaofeng TAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="6",
pages="801-812",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300196"
}
%0 Journal Article
%T Model division multiple access for semantic communications
%A Ping ZHANG
%A Xiaodong XU
%A Chen DONG
%A Kai NIU
%A Haotai LIANG
%A Zijian LIANG
%A Xiaoqi QIN
%A Mengying SUN
%A Hao CHEN
%A Nan MA
%A Wenjun XU
%A Guangyu WANG
%A Xiaofeng TAO
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 6
%P 801-812
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300196
TY - JOUR
T1 - Model division multiple access for semantic communications
A1 - Ping ZHANG
A1 - Xiaodong XU
A1 - Chen DONG
A1 - Kai NIU
A1 - Haotai LIANG
A1 - Zijian LIANG
A1 - Xiaoqi QIN
A1 - Mengying SUN
A1 - Hao CHEN
A1 - Nan MA
A1 - Wenjun XU
A1 - Guangyu WANG
A1 - Xiaofeng TAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 6
SP - 801
EP - 812
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300196
Abstract: In a multi-user system, system resources should be allocated to different users. In traditional communication systems, system resources generally include time, frequency, space, and power, so multiple access technologies such as time division multiple access (TDMA), frequency division multiple access (FDMA), space division multiple access (SDMA), code division multiple access (CDMA), and non-orthogonal multiple access (NOMA) are widely used. In semantic communication, which is considered a new paradigm of the next-generation communication system, we extract high-dimensional features from signal sources in a model-based artificial intelligence approach from a semantic perspective and construct a model information space for signal sources and channel features. From the high-dimensional semantic space, we excavate the shared and personalized information of semantic information and propose a novel multiple access technology, named multiple access (MDMA)%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>model division multiple access (MDMA), which is based on the resource of the semantic domain. From the perspective of information theory, we prove that MDMA can attain more performance gains than traditional multiple access technologies. Simulation results show that MDMA saves more bandwidth resources than traditional multiple access technologies, and that MDMA has at least a 5-dB advantage over NOMA in the additive white Gaussian noise (AWGN) channel under the low signal-to-noise (SNR) condition.
[1]Cover TM, Thomas JA, 2001. Elements of Information Theory. John Wiley & Sons, Ltd., New York, USA, p.374-458.
[2]Dai JC, Wang SX, Tan KL, et al., 2022. Nonlinear transform source-channel coding for semantic communications. IEEE J Sel Areas Commun, 40(8):2300-2316.
[3]Dai LL, Wang BC, Yuan YF, et al., 2015. Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun Mag, 53(9):74-81.
[4]Ding ZG, Adachi F, Poor HV, 2016. The application of MIMO to non-orthogonal multiple access. IEEE Trans Wirel Commun, 15(1):537-552.
[5]Dong C, Liang HT, Xu XD, et al., 2023. Semantic communication system based on semantic slice models propagation. IEEE J Sel Areas Commun, 41(1):202-213.
[6]Gao S, Zhang M, Cheng X, 2018. Precoded index modulation for multi-input multi-output OFDM. IEEE Trans Wirel Commun, 17(1):17-28.
[7]Islam SMR, Avazov N, Dobre OA, et al., 2017. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE J Sel Areas Commun, 19(2):721-742.
[8]Jiang PW, Wen CK, Jin S, et al., 2023. Wireless semantic communications for video conferencing. IEEE J Sel Areas Commun, 41(1):230-244.
[9]Krizhevsky A, 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report, TR-2009. University of Toronto, Toronto, Canada.
[10]Kuznetsova A, Rom H, Alldrin N, et al., 2020. The open images dataset V4: unified image classification, object detection, and visual relationship detection at scale. Int J Comput Vis, 128:1956-1981.
[11]Li WZ, Liang HT, Dong C, et al., 2023. Non-orthogonal multiple access enhanced multi-user semantic communication. https://arxiv.org/abs/2303.06597
[12]Luo XW, Gao RB, Chen HH, et al., 2022. Multi-modal and multi-user semantic communications for channel-level information fusion. IEEE Wirel Commun, early access.
[13]Mao Y, Dizdar O, Clerckx B, et al., 2022. Rate-splitting multiple access: fundamentals, survey, and future research trends. IEEE Commun Surv Tutor, 24(4):2073-2126.
[14]Saito Y, Kishiyama Y, Benjebbour A, et al., 2013. Non-orthogonal multiple access (NOMA) for cellular future radio access. IEEE 77th Vehicular Technology Conf, p.1-5.
[15]Shannon CE, 1948. A mathematical theory of communication. Bell Syst Tech J, 27(3):379-423.
[16]Shi YX, Shao S, Wu YP, et al., 2023. Excess distortion exponent analysis for semantic-aware MIMO communication systems. https://arxiv.org/abs/2301.04357
[17]Wang SX, Dai JC, Liang ZJ, et al., 2023. Wireless deep video semantic transmission. IEEE J Sel Areas Commun, 41(1):214-229.
[18]Wang Z, Zhang JY, Du HY, et al., 2023. Extremely large-scale MIMO: fundamentals, challenges, solutions, and future directions. IEEE Wirel Commun, early access.
[19]Weng Z, Qin Z, 2021. Semantic communication systems for speech transmission. IEEE J Sel Areas Commun, 39(8):2434-2444.
[20]Wu Z, Lu K, Jiang C, et al., 2018. Comprehensive study and comparison on 5G NOMA schemes. IEEE Access, 6:18511-18519.
[21]Xie H, Qin Z, Li GY, et al., 2021. Deep learning enabled semantic communication systems. IEEE Trans Signal Process, 69:2663-2675.
[22]Zhang P, Xu WJ, Gao H, et al., 2022a. Toward wisdom-evolutionary and primitive-concise 6G: a new paradigm of semantic communication networks. Engineering, 8:60-73.
[23]Zhang P, Peng MG, Cui SG, et al., 2022b. Theory and techniques for “intellicise” wireless networks. Front Inform Technol Electron Eng, 23(1):1-4.
[24]Zhang P, Xu XD, Dong C, et al., 2022c. Intellicise communication system: model-driven semantic communications. J China Univ Posts Telecommun, 29(1):2-12.
[25]Zhang Y, Xu W, Gao H, et al., 2022. Multi-user semantic communications for cooperative object identification. IEEE Int Conf on Communications Workshops, p.157-162.
[26]Zhu YW, Huang YK, Qiao XQ, et al., 2022. A semantic-aware transmission with adaptive control scheme for volumetric video service. IEEE Trans Multim, early access.
Open peer comments: Debate/Discuss/Question/Opinion
<1>