Full Text:   <3357>

CLC number: O343.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 5

Clicked: 6960

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2005 Vol.6 No.2 P.126-131

http://doi.org/10.1631/jzus.2005.A0126


The analytical solutions for orthotropic cantilever beams (I): Subjected to surface forces*


Author(s):  Ai-min Jiang1,2, Hao-jiang Ding1

Affiliation(s):  1. Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   jam@vip.sina.com

Key Words:  General solution, Orthotropic media, Cantilever beams, Analytical solutions


JIANG Ai-min, DING Hao-jiang. The analytical solutions for orthotropic cantilever beams (I): Subjected to surface forces[J]. Journal of Zhejiang University Science A, 2005, 6(2): 126-131.

@article{title="The analytical solutions for orthotropic cantilever beams (I): Subjected to surface forces",
author="JIANG Ai-min, DING Hao-jiang",
journal="Journal of Zhejiang University Science A",
volume="6",
number="2",
pages="126-131",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0126"
}

%0 Journal Article
%T The analytical solutions for orthotropic cantilever beams (I): Subjected to surface forces
%A JIANG Ai-min
%A DING Hao-jiang
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 2
%P 126-131
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0126

TY - JOUR
T1 - The analytical solutions for orthotropic cantilever beams (I): Subjected to surface forces
A1 - JIANG Ai-min
A1 - DING Hao-jiang
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 2
SP - 126
EP - 131
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0126


Abstract: 
This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of distinct eigenvalues, a series of beam problems, including the problem of cantilever beam under uniform loads, cantilever beam with axial load and bending moment at the free end, cantilever beam under the first, second, third and fourth power of x tangential loads, is solved by the superposition principle and the trial-and-error methods.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Ding, H.J., Wang, G.Q., Chen, W.Q., 1997. General solution of plane problem of piezoelectric media expressed by “harmonic functions”. , Applied Mathematics and Mechanics. 18:757-764, :

[2] Ding, H.J., Wang, G.Q., Chen, W.Q., 1997. Green’s functions for a two-phase infinite piezoelectric plane. Proceedings of Royal Society of London (A), 453:2241-57. 

[3] Lekhnitskii, S.G., 1969. Anisotropic Plate. , Gordon and Breach, London, :

[4] Timoshenko, S.P., Goodier, J.N., 1970. Theory of Elasticity (3rd Ed), McGraw Hill, New York,:


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE