Full Text:   <1189>

CLC number: Q332

On-line Access: 

Received: 2006-04-04

Revision Accepted: 2006-05-31

Crosschecked: 0000-00-00

Cited: 8

Clicked: 2789

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2006 Vol.7 No.8 P.603~607

10.1631/jzus.2006.B0603


A robust statistical procedure to discover expression biomarkers using microarray genomic expression data


Author(s):  ZOU Yang-yun, YANG Jian, ZHU Jun

Affiliation(s):  Institute of Bioinformatics, Zhejiang University, Hangzhou 310029, China

Corresponding email(s):   jzhu@zju.edu.cn

Key Words:  Microarray, Biomarker, Henderson method III, Gene expression pattern, Mixed linear model


Share this article to: More |Next Article >>>

ZOU Yang-yun, YANG Jian, ZHU Jun. A robust statistical procedure to discover expression biomarkers using microarray genomic expression data[J]. Journal of Zhejiang University Science B, 2006, 7(8): 603~607.

@article{title="A robust statistical procedure to discover expression biomarkers using microarray genomic expression data",
author="ZOU Yang-yun, YANG Jian, ZHU Jun",
journal="Journal of Zhejiang University Science B",
volume="7",
number="8",
pages="603~607",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.B0603"
}

%0 Journal Article
%T A robust statistical procedure to discover expression biomarkers using microarray genomic expression data
%A ZOU Yang-yun
%A YANG Jian
%A ZHU Jun
%J Journal of Zhejiang University SCIENCE B
%V 7
%N 8
%P 603~607
%@ 1673-1581
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.B0603

TY - JOUR
T1 - A robust statistical procedure to discover expression biomarkers using microarray genomic expression data
A1 - ZOU Yang-yun
A1 - YANG Jian
A1 - ZHU Jun
J0 - Journal of Zhejiang University Science B
VL - 7
IS - 8
SP - 603
EP - 607
%@ 1673-1581
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.B0603


Abstract: 
microarray has become increasingly popular biotechnology in biological and medical researches, and has been widely applied in classification of treatment subtypes using expression patterns of biomarkers. We developed a statistical procedure to identify expression biomarkers for treatment subtype classification by constructing an F-statistic based on henderson method III. Monte Carlo simulations were conducted to examine the robustness and efficiency of the proposed method. Simulation results showed that our method could provide satisfying power of identifying differentially expressed genes (DEGs) with false discovery rate (FDR) lower than the given type I error rate. In addition, we analyzed a leukemia dataset collected from 38 leukemia patients with 27 samples diagnosed as acute lymphoblastic leukemia (ALL) and 11 samples as acute myeloid leukemia (AML). We compared our results with those from the methods of significance analysis of microarray (SAM) and microarray analysis of variance (MAANOVA). Among these three methods, only expression biomarkers identified by our method can precisely identify the three human acute leukemia subtypes.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., et al., 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769):503-511.

[2] Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1):289-300.

[3] Fowlkes, E.B., Mallows, C.L., 1983. A method for comparing two hierarchical clusterings. J. American Statistical Association, 78(383):553-569.

[4] Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., et al., 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286(5439):531-537.

[5] Hubert, L., Arabie, P., 1985. Comparing partitions. Journal of Classification, 2(1):193-218.

[6] Jain, A.K., Dubes, R.C., 1988. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, NJ.

[7] Jin, W., Riley, R.M., Wolfinger, R.D., White, K.P., Passador-Gurgel, G., Gibson, G., 2001. The contributions of sex, genotype and age to transcriptional variance in drosophila melanogaster. Nature Genetics, 29(4):389-395.

[8] Kerr, M.K., Churchill, G.A., 2001. Experimental design for gene expression microarrays. Biostatistics, 2(2):183-201.

[9] Kerr, M.K., Martin, M., Churchill, G.A., 2000. Analysis of variance for gene expression microarray data. Journal of Computational Biology, 7(6):819-837.

[10] Lu, Y., Zhu, J., Liu, P., 2005. A two-step strategy for detecting differential gene expression of cDNA microarray data. Current Genetics, 47(2):121-131.

[11] Searle, S.R., 1971. Linear Models. John Wiley & Sons, New York.

[12] Spindler, S.R., 2006. Use of microarray biomarkers to identify longevity therapeutics. Aging Cell, 5(1):39-50.

[13] Tusher, V.G., Tibshirani, R., Chu, G., 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Nat. Acad. Sci. USA, 98(9):5116-5121.

[14] Wang, C.S., Rutledge, J.J., Gianola, D., 1994. Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genetics Selection Evolution, 26:91-115.

[15] Wolfinger, R.D., Gibson, G., Wolfinger, E.D., Bennett, L., Hamadeh, H., Bushel, P., Afshari, C., Paules, R.S., 2001. Assessing gene significance from cDNA microarray expression data via mixed models. Journal of Computational Biology, 8(6):625-638.

[16] Woo, Y., Krueger, W., Kaur, A., Churchill, G., 2005. Experimental design for three-color and four-color gene expression microarrays. Bioinformatics, 21(Suppl. 1):i459-i467.

[17] Zhu, J., 2000. Mixed linear model approaches for analyzing genetic models of complex quantitative traits. Journal of Zhejiang University SCIENCE, 1(1):78-90.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE