Full Text:   <5249>

CLC number: TN82

On-line Access: 

Received: 2008-07-18

Revision Accepted: 2008-10-28

Crosschecked: 2009-02-16

Cited: 14

Clicked: 5595

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2009 Vol.10 No.4 P.583-588


Research progress on Fabry-Perot resonator antenna

Author(s):  Zhen-guo LIU, Zhi-chen GE, Xi-yuan CHEN

Affiliation(s):  State Key Lab of Millimeter Waves, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   liuzhenguo@seu.edu.cn

Key Words:  Fabry-Perot resonator (FPR) antenna, Electromagnetic band gap (EBG) resonator antenna, Leaky-wave antenna, Defect mode, Artificial magnetic conductor (AMC), Frequency selective surface (FSS)

Zhen-guo LIU, Zhi-chen GE, Xi-yuan CHEN. Research progress on Fabry-Perot resonator antenna[J]. Journal of Zhejiang University Science A, 2009, 10(4): 583-588.

@article{title="Research progress on Fabry-Perot resonator antenna",
author="Zhen-guo LIU, Zhi-chen GE, Xi-yuan CHEN",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Research progress on Fabry-Perot resonator antenna
%A Zhen-guo LIU
%A Zhi-chen GE
%A Xi-yuan CHEN
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 4
%P 583-588
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820546

T1 - Research progress on Fabry-Perot resonator antenna
A1 - Zhen-guo LIU
A1 - Zhi-chen GE
A1 - Xi-yuan CHEN
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 4
SP - 583
EP - 588
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820546

The fabry-Perot resonator (FPR) antenna has found wide applications in microwave and millimeter waves and recently attracted considerable interest. In this paper, a summary of planar and cylindrical structures, analytic models and research development is presented, and a comparison between these structures and analytic models is made, showing that such analytic models as the FP cavity mode, electromagnetic band gap (EBG) defect mode, transmission line mode, and leaky-wave mode are consistent when applied to analyze this type of resonator antenna. Some interesting topics under recent research, including dual or multi-band, improvement of gain bandwidth, low profile and beam control, are surveyed.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Alexopoulos, N.G., Jackson, D.R., 1984. Fundamental superstrate (cover) effects on printed circuit antennas. IEEE Trans. Antennas Propag., 32(8):807-816.

[2] Boutayeb, H., Tarot, A.C., 2006. Internally excited Fabry-Perot type cavity: power normalization and directivity evaluation. Antenna Wirel. Propag. Lett., 5(1):159-162.

[3] Boutayeb, H., Mahdjoubi, K., Tarot, A.C., Denidni, T.A., 2006a. Directivity of an antenna embedded inside a Fabry-Perot cavity analysis and design. Microw. Opt. Tech. Lett., 48(1):12-17.

[4] Boutayeb, H., Denidni, T.A., Mahdjoubi, K., Tarot, A.C., Sebak, A.R., Talbi, L., 2006b. Analysis and design of a cylindrical EBG based directive antenna. IEEE Trans. Antennas Propag., 54(1):211-219.

[5] Cheype, C., Serier, C., Thèvenot, M., Monediere, T., Reineix, A., Jecko, B., 2002. An electromagnetic bandgap resonator antenna. IEEE Trans. Antennas Propag., 50(9):1285-1290.

[6] Feresidis, A.P., Vardaxoglou, J.C., 2001. High-gain planar antenna using optimized partially reflective surfaces. IEE Proc.-Microw. Antennas Propag., 148(6):345-350.

[7] Feresidis, A.P., Goussetis, G., Wang, S.H., Vardaxoglou, J.C., 2005. Artificial magnetic conductor surface and their application to low-profile high-gain planar antennas. IEEE Trans. Antennas Propag., 53(1):209-214.

[8] Feresidis, A.P., Maragou, M., Palikaras, G.K., Vardaxoglou, J.C., 2007. Cylindrical-conformal Resonant Cavity Antennas Using Passive Periodic Surfaces. 10th Int. Conf. on Electromagnetics in Advanced Applications, p.165-168.

[9] Gardelli, R., Albani, M., Capolino, F., 2006. Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement. IEEE Trans. Antennas Propag., 54(7):1979-1990.

[10] Ge, Z.C., Zhang, W.X., Liu, Z.G., Gu, Y.Y., 2006. Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover. Microw. Opt. Tech. Lett., 48(7):1272-1274.

[11] Hao, Y., Alomainy, A.H., Parini, C.G., 2004. Antenna-beam shaping from offset defects in UC-EBG cavities. Microw. Opt. Tech. Lett., 43(2):108-111.

[12] Jackson, D.R., Alexopoulos, N.G., 1985. Gain enhancement methods for printed circuit antennas. IEEE Trans. Antennas Propag., 33(9):976-987.

[13] Jackson, D.R., Oliner, A., 1988. A leaky-wave analysis of the high-gain printed antenna configuration. IEEE Trans. Antennas Propag., 36(7):905-910.

[14] Jackson, D.R., Oliner, A.A, Ip, A., 1993. Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure. IEEE Trans. Antennas Propag., 41(3):344-348.

[15] Lee, Y.J., Yeo, J., Ko, K.D., Mittra, R., Lee, Y., Park, W.S., 2004a. A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement. Microw. Opt. Tech. Lett., 42(1):25-31.

[16] Lee, Y.J., Yeo, J., Mittra, R., Park, W.S., 2004b. Design of a high-directivity electromagnetic band gap resonator antenna using a frequency-selective surface superstrate. Microw. Opt. Tech. Lett., 43(6):462-467.

[17] Lee, Y.J., Yeo, J., Mittra, R., Park, W.S., 2005a. Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters. IEEE Trans. Antennas Propag., 53(1):224-235.

[18] Lee, Y.J., Yeo, J., Mittra, R., Park, W.S., 2005b. Thin Frequency Selective Surface (FSS) Superstrate with Different Periodicities for Dual-band Directivity Enhancement. IEEE Int. Workshop on Antenna Technology, p.375-378.

[19] Liu, Z.G., 2008. Quasi-periodic Structure Application in Fabry-Perot Resonator Printed Antenna. Asia Pasific Microwave Conf.

[20] Liu, Z.G., Zhang, W.X., Fu, D.L., Gu, Y.Y., Ge, Z.C., 2008. Broadband Fabry-Perot resonator printed antennas using FSS superstrate with dissimilar size. Microw. Opt. Tech. Lett., 50(6):1623-1627.

[21] Ourir, A., Burokur, S.N., de Lustrac, A., 2007a. Phase-varying metamaterial for compact steerable directive antennas. Electron. Lett., 43(9):493-494.

[22] Ourir, A., Burokur, S.N., de Lustrac, A., 2007b. Electronically reconfigurable metamaterial for compact directive cavity antennas. Electron. Lett., 43(13):698-700.

[23] Palikaras, G.K., Feresidis, A.P., Vardaxoglou, J.C., 2004. Cylindrical electromagnetic bandgap structures for directive base station antennas. IEEE Antenna Wirel. Propag. Lett., 3(6):87-89.

[24] Pirhadi, A., Hakkak, M., 2007. Design of compact dual band high directive electromagnetic bandgap (EBG) resonator antenna using artificial magnetic conductor. IEEE Trans. Antennas Propag., 55(6):1682-1690.

[25] Qiu, M., He, S., 2001. High-directivity patch antenna with both photonic bandgap substrate and photonic bandgap cover. Microw. Opt. Tech. Lett., 30(1):41-44.

[26] Thévenot, M., Cheype, C., Reineix, A., Jecko, B., 1999. Directive photonic-bandgap antennas. IEEE Trans. Antennas Propag., 47(11):2115-2122.

[27] Thévenot, M., Drouet, J., Chantalat, R., Arnaud, E., Monediere, T., Jecko, B., 2007. Improvements for the EBG Resonator Antenna Technology. European Conf. on Antenna and Propagation, p.1-6.

[28] Trentini, G.V., 1956. Partially reflecting sheet array. IRE Trans. Antennas Propag., 4(4):666-671.

[29] Wang, S.H., Feresidis, A.P., Goussetis, G., Vardaxoglou, J.C., 2004. Low-profile resonant cavity antenna with artificial magnetic conductor ground plane. Electron. Lett., 40(7):405-406.

[30] Weily, A.R., Esselle, K.P., Sanders, B.C., Bird, T.S., 2005a. High-gain 1D EBG resonator antenna. Microw. Opt. Tech. Lett., 47(2):107-114.

[31] Weily, A.R., Horvath, L., Esselle, K.P., Sanders, B.C., Bird, T.S., 2005b. A planar resonator antenna based on a woodpile EBG material. IEEE Trans. Antennas Propag., 53(1):216-223.

[32] Weily, A.R., Esselle, K.P., Bird, T.S., Sanders, B.C., 2007. Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth. IET Microw. Antennas Propag., 1(1):198-203.

[33] Wu, A.T., Guan, B.R., 2004. Broadband microstrip patch antenna using a superstrate layer. J. Hangzhou Inst. Electron. Eng., 24(6):4-7.

[34] Yang, H., Alexopoulos, N.G., 1987. Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Trans. Antennas Propag., 35(7):860-863.

[35] Zhao, T., Jackson, D.R., Williams, J.T., Yang, H.Y., Oliner, A., 2005a. 2D periodic leaky wave antenna part I: metal patch design. IEEE Trans. Antennas Propag., 53(11):3505-3514.

[36] Zhao, T., Jackson, D.R., Williams, J.T., 2005b. 2D periodic leaky wave antenna part II: slot design. IEEE Trans. Antennas Propag., 53(11):3515-3524.

[37] Zhou, L., Li, H.Q., Qin, Y.Q., Wei, Z.Y., Chan, C.T., 2005. Directive emission from subwavelength metamaterial-based cavities. Appl. Phys. Lett., 86(10):101101.

[38] Zhu, F.M., Lin, Q.C., He, S., Hu, J., Ying, Z.N., 2003. A High Directivity Patch Antenna Using a PBG Cover Together with a PBG Substrate. Proc. 6th Int. Symp. on Antennas Propagation and EM Theory, p.92-95.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE