CLC number: X24; O62
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-07-16
Cited: 2
Clicked: 5606
Lu-ting Pan, Zheng Shen, Lei Wu, Ya-lei Zhang, Xue-fei Zhou, Fang-ming Jin. Hydrothermal production of formic and acetic acids from syringol[J]. Journal of Zhejiang University Science A, 2010, 11(8): 613-618.
@article{title="Hydrothermal production of formic and acetic acids from syringol",
author="Lu-ting Pan, Zheng Shen, Lei Wu, Ya-lei Zhang, Xue-fei Zhou, Fang-ming Jin",
journal="Journal of Zhejiang University Science A",
volume="11",
number="8",
pages="613-618",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000043"
}
%0 Journal Article
%T Hydrothermal production of formic and acetic acids from syringol
%A Lu-ting Pan
%A Zheng Shen
%A Lei Wu
%A Ya-lei Zhang
%A Xue-fei Zhou
%A Fang-ming Jin
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 8
%P 613-618
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000043
TY - JOUR
T1 - Hydrothermal production of formic and acetic acids from syringol
A1 - Lu-ting Pan
A1 - Zheng Shen
A1 - Lei Wu
A1 - Ya-lei Zhang
A1 - Xue-fei Zhou
A1 - Fang-ming Jin
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 8
SP - 613
EP - 618
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000043
Abstract: The production of formic and acetic acids (or salts) by hydrothermal oxidation of syringol, a model compound for lignin, was investigated using a batch reactor. Results show that the highest yields of formic and acetic acids were, respectively, 59.6% and 11.3% at the reaction condition of 0.5 mol/L NaOH, 120% H2O2 supply and 280 °C. These results will inform studies aiming to develop more environmental friendly lignin conversion processes by obtaining products beyond a CO2 end product.
[1]Akiya, N., Savage, P.E., 2002. Roles of water for chemical reactions in high-temperature water. Chemical Reviews, 102(8):2725-2750.
[2]Devlin, H.R., Harris, I.J., 1984. Mechanism of the oxidation of aqueous phenol with dissolved oxygen. Industrial and Engineering Chemistry Research Fundamentals, 23(4):387-392.
[3]Effendi, A., Gerhauser, H., Bridgwater, A.V., 2008. Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable and Sustainable Energy Reviews, 12(12):2092-2116.
[4]Feng, W., van der Kooi, H.J., de Swaan Arons, J., 2004a. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chemical Engineering and Processing, 43(12):1459-1467.
[5]Feng, W., van der Kooi, H.J., de Swaan Arons, J., 2004b. Phase equilibria for biomass conversion processes in subcritical and supercritical water. Chemical Engineering Journal, 98(1-2):105-113.
[6]Gopalan, S., Savage, P.E., 1994. Reaction mechanism for phenol oxidation in supercritical water. Journal of Physical Chemistry, 98(48):12646-12652.
[7]Gosselink, R.J.A., de Jong, E., Guran, B., Abächerli, A., 2004. Coordination network for lignin-standardisation, production and applications adapted to market requirements (EUROLIGNIN). Industrial Crops and Products, 20(2):121-129.
[8]Jin, F., Zhou, Z., Enomoto, H., Moriya, T., Higashijima, H., 2004. Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid-base catalytic effect of subcritical water. Chemistry Letter, 33(2):126-127.
[9]Jin, F., Zhou, Z., Moriya, T., Kishida, H., Higashijima, H., Enomoto, H., 2005. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environmental Science and Technology, 39(6):1893-1902.
[10]Jin, F.M., Yun, J., Li, G.M., Kishita, A., Tohji, K., Enomoto, H., 2008. Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chemistry, 10(6):612-615.
[11]Joglekar, H.S., Samant, S.D., Joshi, J.B., 1991. Kinetics of wet air oxidation of phenol and substituted phenols. Water Research, 25(2):135-145.
[12]Kishida, H., Jin, F., Zhou, Z., Moriya, T., Enomoto, H., 2005. Conversion of glycerin into lactic acid by alkaline hydrothermal reaction. Chemistry Letter, 34(11):1560-1561.
[13]Klein, M.T., Torry, L.A., Wu, B.C., Townsend, S.H., Paspek, S.C.J., 1990. Hydrolysis in supercritical water: Solvent effects as a probe of the reaction mechanism. Journal of Supercritical Fluids, 3(4):222-227.
[14]Krammer, P., Vogel, H.J., 2000. Hydrolysis of esters in subcritical and supercritical water. Journal of Supercritical Fluids, 16(3):189-206.
[15]Martino, C.J., Savage, P.E., 1997. Supercritical water oxidation kinetics, products, and pathways for CH3- and cho-substituted phenols. Industrial and Engineering Chemistry Research, 36(5):1391-1400.
[16]Matsumura, Y., Minowa, T., Potic, B., Kersten, S.R.A., Prins, W., van Swaaij, W.P.M., van de Beld, B., Elliott, D.C., Neuenschwander, G.G., Kruse, A., Antal, A.Jr., 2005. Biomass gasification in near- and super-critical water: status and prospects. Biomass and Bioenergy, 29(4):269-292.
[17]Matsumura, Y., Sasaki, M., Okuda, K., Takami, S., Ohara, S., Umetsu, M., Adschiri, T., 2006. Supercritical water treatment of biomass for energy and material recovery. Combustion Science and Technology, 178(1-3):509-536.
[18]Mohan, S.V., Karthikeyan, J., 1997. Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environmental Pollution, 97(1-2):183-187.
[19]Osada, M., Sato, T., Watanabe, M., Shirai, M., Arai, K., 2006. Catalytic gasification of wood biomass in subcritical and supercritical water. Combustion Science and Technology, 178(1-3):537-552.
[20]Portela, J.R., Nebot, E., Martinez de la Ossa, E., 2001. Kinetic comparison between subcritical and supercritical water oxidation of phenol. Chemical Engineering Journal, 81(1-3):287-299.
[21]Pu, Y., Zhang, D., Singh, P.M., Ragauskas, A.J., 2008. The new forestry biofuels sector. Biofuels, Bioproducts and Biorefining, 2(1):58-73.
[22]Sasaki, M., Kabyemela, B., Malaluan, R., Hirose, S., Takeda, N., Adschiri, T., Arai, K.J., 1998. Cellulose hydrolysis in subcritical and supercritical water. Journal of Supercritical Fluids, 13(1-3):261-268.
[23]Scheck, C.K., Frimmel, F.H., 1995. Degradation of phenol and salicylic acid by ultraviolet radiation/hydrogen peroxide/oxygen. Water Research, 29(10):2346-2352.
[24]Suzuki, H., Cao, J., Jin, F., Kishida, A., Enomoto, H., 2006. Wet oxidation of lignin model compounds and acetic acid production. Journal of Materials Science, 41(5):1591-1597.
[25]Thornton, T.D., Savage, P.E., 1990. Phenol oxidation in supercritical water. Journal of Supercritical Fluids, 3(4):240-248.
[26]Watanabe, M., Sato, T., Inomata, H., Smith, R.L., Arai, K., Kruse, A., Dinjus, E., 2004. Chemical reactions of C1 compounds in near-critical and supercritical water. Chemical Reviews, 104(12):5803-5822.
[27]Yu, Y., Lou, X., Wu, H., 2008. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy & Fuels, 22(1):46-60.
[28]Zhang, Q., Chuang, K.T., 2001. Adsorption of organic pollutants from effluents of a Kraft pulp mill on activated carbon and polymer resin. Advances in Environmental Research, 5(3):251-258.
[29]Zhou, Z., Jin, F., Enomoto, H., 2006. A continuous flow reaction system for producing acetic acid by wet oxidation of biomass waste. Journal of Materials Science, 41(5):1501-1507.
Open peer comments: Debate/Discuss/Question/Opinion
<1>