Full Text:   <1120>

Summary:  <327>

CLC number: O359.1

On-line Access: 2017-03-07

Received: 2016-01-13

Revision Accepted: 2016-07-28

Crosschecked: 2017-02-07

Cited: 0

Clicked: 1425

Citations:  Bibtex RefMan EndNote GB/T7714


Zheng-liang Huang


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2017 Vol.18 No.3 P.212-224


Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe

Author(s):  Dong-fang Hu, Zheng-liang Huang, Jing-yuan Sun, Jing-dai Wang, Zu-wei Liao, Bin-bo Jiang, Jian Yang, Yong-rong Yang

Affiliation(s):  State Key Laboratory of Chemical Engineering, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   huangzhengl@zju.edu.cn

Key Words:  90°, duct bend, Contraction, Computational fluid dynamics (CFD), Uniform distribution, Hydrodynamics

Dong-fang Hu, Zheng-liang Huang, Jing-yuan Sun, Jing-dai Wang, Zu-wei Liao, Bin-bo Jiang, Jian Yang, Yong-rong Yang. Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe[J]. Journal of Zhejiang University Science A, 2017, 18(3): 212-224.

@article{title="Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe",
author="Dong-fang Hu, Zheng-liang Huang, Jing-yuan Sun, Jing-dai Wang, Zu-wei Liao, Bin-bo Jiang, Jian Yang, Yong-rong Yang",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe
%A Dong-fang Hu
%A Zheng-liang Huang
%A Jing-yuan Sun
%A Jing-dai Wang
%A Zu-wei Liao
%A Bin-bo Jiang
%A Jian Yang
%A Yong-rong Yang
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 3
%P 212-224
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600016

T1 - Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe
A1 - Dong-fang Hu
A1 - Zheng-liang Huang
A1 - Jing-yuan Sun
A1 - Jing-dai Wang
A1 - Zu-wei Liao
A1 - Bin-bo Jiang
A1 - Jian Yang
A1 - Yong-rong Yang
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 3
SP - 212
EP - 224
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600016

The effect of a gradual contraction pipe (GCP) on gas-liquid flow in a circular-sectioned horizontal to vertical 90°; duct bend was investigated by computational fluid dynamics (CFD) simulation. The hydrodynamics of gas-liquid flow in 90°; duct bends with and without a GCP in the vertical section were compared using a 3D steady Eulerian-Eulerian approach. The predicted static pressure in the vertical section of the pipes and the pressure drop in the whole pipe were consistent with experimental data. Results of simulations showed that liquid could distribute more uniformly at the exit of the pipe with a GCP. The increased uniformity was accompanied by an increase in pressure drop by a factor of less than 10% compared to the pipe without a GCP. The position of minimum pressure in the bend was changed by the GCP. A GCP can alter the trajectories of the fluid and secondary flow. As a result, the fluid can quickly reach a steady state downstream from the bend.

In this paper, the hydrodynamics of gas-liquid flow through 90˚ duct bend have been simulated and the effects of pipe contraction downstream the bend are studied in comparison with the pipe with no contraction. To do so, a three dimensional steady Euilerian approach is used and liquid distribution along the pipe cross section and length is studied.


创新点:1. 提出在弯头后的管路中增加缩径管来调整流体的方法;2. 在冷模实验数据验证模拟结果的正确性的基础上,根据CFD模拟得到的管道内的压力、流体速度、相分布及湍动能分布详细分析了缩径管能起整流作用的原因。
方法:1. 通过冷模实验所得的压力数据与模拟值进行对比,证明模拟所采用模型的正确性;2. 通过对不同流体入口条件模拟结果的比较,找到缩径管的作用规律;3. 通过CFD模拟得到管道内的压力、流体速度、相分布及湍动能,分析缩径管的整流原理。
结论:1. 模拟所采用的模型可较好地反映管道内的流体流动情况;2. 缩径管能起到很好的整流效果;3. 缩径管可使流体加速,促进流体的快速混合,因此能够使不稳定的流体快速达到稳定状态。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Ahmadpour, A., Noori Rahim Abadi, S.M.A., Kouhikamali, R., 2016. Numerical simulation of two-phase gas–liquid flow through gradual expansions/contractions. International Journal of Multiphase Flow, 79:31-49.

[2]Akilli, H., Levy, E.K., Sahin, B., 2001. Gas-solid flow behavior in a horizontal pipe after a 90 degrees vertical-to-horizontal elbow. Powder Technology, 116(1):43-52.

[3]Alizadehdakhel, A., Rahimi, M., Sanjari, J., et al., 2009. CFD and artificial neural network modeling of two-phase flow pressure drop. International Communications in Heat and Mass Transfer, 36(8):850-856.

[4]Azzi, A., Friedel, L., Belaadi, S., 1999. Two-phase gas/liquid flow pressure loss in bends. Forschung im Ingenieurwesen, 65(7):309-318.

[5]Baker, O., 1954. Simultaneous flow of oil and gas. Oil Gas Journal, 53(1):85-95.

[6]Bilirgen, H., Levy, E.K., 2011. Mixing and dispersion of particle ropes in lean phase pneumatic conveying. Powder Technology, 119(2-3):134-152.

[7]Burger, M., Klose, G., Rottenkolber, G., et al., 2002. A combined Eulerian and Lagrangian method for prediction of evaporating sprays. Journal of Engineering for Gas Turbines and Power, 124:481-488.

[8]Chen, H.J., Zhang, B.Z., Su, X.Y., 2003. Low frequency oscillatory flow in a rotating curved pipe. Journal of Zhejiang University-SCIENCE, 4(4):407-414.

[9]Crawford, N., Spence, S., Simpson, A., et al., 2009. A numerical investigation of the flow structures and losses for turbulent flow in 90 degrees elbow bends. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 223(1):27-44.

[10]Fan, J.R., Yao, J., Cen, K.F., 2002. Antierosion in a 90 degrees bend by particle impaction. AIChE Journal, 48(7):1401-1412.

[11]He, Y.L., Zhao, C.F., Ding, W.J., et al., 2007. Two-dimensional numerical simulation and performance analysis of tapered pulse tube refrigerator. Applied Thermal Engineering, 27(11-12):1876-1882.

[12]Holley, B., Faghri, A., 2005. Analysis of pulsating heat pipe with capillary wick and varying channel diameter. International Journal of Heat and Mass Transfer, 48(13):2635-2651.

[13]Iacovides, H., Launder, B.E., Loizou, P.A., et al., 1990. Turbulent boundary-layer development around a square-sectioned U-bend measurements and computation. Journal of Fluids Engineering, 112(4):409-415.

[14]Kim, S., Park, J.H., Kojasoy, G., et al., 2007. Geometric effects of 90-degree elbow in the development of interfacial structures in horizontal bubbly flow. Nuclear Engineering and Design, 237(20-21):2105-2113.

[15]Kim, S., Kojasoy, G., Guo, T.W., 2010. Two-phase minor loss in horizontal bubbly flow with elbows: 45 degrees and 90 degrees elbows. Nuclear Engineering and Design, 240(2):284-289.

[16]Kolmogorov, A.N., 1949. On the disintegration of drops in a turbulent flow. Doklady Akademii Nauk SSSR, 66:825.

[17]Kuan, B., Yang, W., Schwarz, M.P., 2007. Dilute gas-solid two-phase flows in a curved 90 degrees duct bend: CFD simulation with experimental validation. Chemical Engineering Science, 62(7):2068-2088.

[18]Launder, B.E., Spalding, D.B., 1972. Lectures in Mathematical Models of Turbulence. Academic Press, London, UK.

[19]Li, T.W., Pougatch, K., Salcudean, M., et al., 2010. Numerical simulation of an evaporative spray in a gas-solid crossflow. International Journal of Chemical Reactor Engineering, 8(1):A43.

[20]Liu, Y., Miwa, S., Hibiki, T., et al., 2012. Experimental study of internal two-phase flow induced fluctuating force on a 90 degrees elbow. Chemical Engineering Science, 76: 173-187.

[21]Moukalled, F., Darwish, M., 2008. Mixing and evaporation of liquid droplets injected into an air stream flowing at all speeds. Physics of Fluids, 20:040804.

[22]Njobuenwu, D.O., Fairweather, M., Yao, J., 2012. Prediction of turbulent gas-solid flow in a duct with a 90 degrees bend using an Eulerian-Lagrangian approach. AIChE Journal, 58(1):14-30.

[23]Paliwoda, A., 1992. Generalized method of pressure drop calculation across pipe components containing two-phase flow of refrigerants. International Journal of Refrigeration, 15(2):119-125.

[24]Rutten, F., Meinke, M., Schroder, W., 2001. Large-eddy simulations of 90 degrees pipe bend flows. Journal of Turbulence, 2(3):1-14.

[25]Schiller, L., Naumann, A., 1935. A drag coefficient correlation. Zeitschrift Des Vereines Deutscher Ingenieure, 77:318-320.

[26]Shiraishi, M., Ikeguchi, T., Murakami, M., et al., 2002. Visualization of oscillatory flow phenomena in tapered pulse tube refrigerators. AIP Conference Proceedings, 613(1):768-775.

[27]Spedding, P.L., Benard, E., 2007. Gas-liquid two phase flow through a vertical 90 degrees elbow bend. Experimental Thermal and Fluid Science, 31(7):761-769.

[28]Spedding, P.L., Benard, E., Donnelly, G.F., 2006. Prediction of pressure drop in multiphase horizontal pipe flow. International Communications in Heat and Mass Transfer, 33(9):1053-1062.

[29]Sroka, L.M., Forney, L.J., 1989. Fluid mixing in a 90-degrees pipeline elbow. Industrial & Engineering Chemistry Research, 28(6):850-856.

[30]Tunstall, M.J., Harvey, J.K., 1968. On effect of a sharp bend in a fully developed turbulent pipe-flow. Journal of Fluid Mechanics, 34(3):595-608.

[31]Vashisth, S., Grace, J.R., 2012. Simulation of granular transport of Geldart type-A, -B, and -D particles through a 90 degrees elbow. Industrial & Engineering Chemistry Research, 51(4):2030-2047.

[32]Wang, C.C., Chen, I.Y., Yang, Y.W., et al., 2003. Two-phase flow pattern in small diameter tubes with the presence of horizontal return bend. International Journal of Heat and Mass Transfer, 46(16):2975-2981.

[33]Wang, C.C., Chen, I.Y., Yang, Y.W., et al., 2004. Influence of horizontal return bend on the two-phase flow pattern in small diameter tubes. Experimental Thermal and Fluid Science, 28(2-3):145-152.

[34]Weske, J.R., 1948. Experimental investigation of velocity distributions downstream of single dust bends. Technical Report NACA-TN-1471, NASA, Washington DC, USA.

[35]Yang, L.W., 2009. Experimental research of high frequency tapered pulse tube cooler. Cryogenics, 49(12):738-741.

[36]Yao, L.S., Berger, S.A., 1975. Entry flow in a curved pipe. Journal of Fluid Mechanics, 67(1):177-196.

[37]Zhang, H., Tan, Y.Q., Yang, D.M., et al., 2012. Numerical investigation of the location of maximum erosive wear damage in elbow: effect of slurry velocity, bend orientation and angle of elbow. Powder Technology, 217: 467-476.

[38]Zhang, P.S., Roberts, R.M., Benard, A., 2013. Numerical simulation of turbulent mist flows with liquid film formation in curved pipes using an Eulerian–Eulerian method. Journal of Fluids Engineering, 135(9):091303.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE