CLC number: O359.1
On-line Access: 2017-03-07
Received: 2016-01-13
Revision Accepted: 2016-07-28
Crosschecked: 2017-02-07
Cited: 0
Clicked: 4595
Dong-fang Hu, Zheng-liang Huang, Jing-yuan Sun, Jing-dai Wang, Zu-wei Liao, Bin-bo Jiang, Jian Yang, Yong-rong Yang. Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe[J]. Journal of Zhejiang University Science A, 2017, 18(3): 212-224.
@article{title="Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe",
author="Dong-fang Hu, Zheng-liang Huang, Jing-yuan Sun, Jing-dai Wang, Zu-wei Liao, Bin-bo Jiang, Jian Yang, Yong-rong Yang",
journal="Journal of Zhejiang University Science A",
volume="18",
number="3",
pages="212-224",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600016"
}
%0 Journal Article
%T Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe
%A Dong-fang Hu
%A Zheng-liang Huang
%A Jing-yuan Sun
%A Jing-dai Wang
%A Zu-wei Liao
%A Bin-bo Jiang
%A Jian Yang
%A Yong-rong Yang
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 3
%P 212-224
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600016
TY - JOUR
T1 - Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe
A1 - Dong-fang Hu
A1 - Zheng-liang Huang
A1 - Jing-yuan Sun
A1 - Jing-dai Wang
A1 - Zu-wei Liao
A1 - Bin-bo Jiang
A1 - Jian Yang
A1 - Yong-rong Yang
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 3
SP - 212
EP - 224
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600016
Abstract: The effect of a gradual contraction pipe (GCP) on gas-liquid flow in a circular-sectioned horizontal to vertical 90°; duct bend was investigated by computational fluid dynamics (CFD) simulation. The hydrodynamics of gas-liquid flow in 90°; duct bends with and without a GCP in the vertical section were compared using a 3D steady Eulerian-Eulerian approach. The predicted static pressure in the vertical section of the pipes and the pressure drop in the whole pipe were consistent with experimental data. Results of simulations showed that liquid could distribute more uniformly at the exit of the pipe with a GCP. The increased uniformity was accompanied by an increase in pressure drop by a factor of less than 10% compared to the pipe without a GCP. The position of minimum pressure in the bend was changed by the GCP. A GCP can alter the trajectories of the fluid and secondary flow. As a result, the fluid can quickly reach a steady state downstream from the bend.
In this paper, the hydrodynamics of gas-liquid flow through 90˚ duct bend have been simulated and the effects of pipe contraction downstream the bend are studied in comparison with the pipe with no contraction. To do so, a three dimensional steady Euilerian approach is used and liquid distribution along the pipe cross section and length is studied.
[1]Ahmadpour, A., Noori Rahim Abadi, S.M.A., Kouhikamali, R., 2016. Numerical simulation of two-phase gas–liquid flow through gradual expansions/contractions. International Journal of Multiphase Flow, 79:31-49.
[2]Akilli, H., Levy, E.K., Sahin, B., 2001. Gas-solid flow behavior in a horizontal pipe after a 90 degrees vertical-to-horizontal elbow. Powder Technology, 116(1):43-52.
[3]Alizadehdakhel, A., Rahimi, M., Sanjari, J., et al., 2009. CFD and artificial neural network modeling of two-phase flow pressure drop. International Communications in Heat and Mass Transfer, 36(8):850-856.
[4]Azzi, A., Friedel, L., Belaadi, S., 1999. Two-phase gas/liquid flow pressure loss in bends. Forschung im Ingenieurwesen, 65(7):309-318.
[5]Baker, O., 1954. Simultaneous flow of oil and gas. Oil Gas Journal, 53(1):85-95.
[6]Bilirgen, H., Levy, E.K., 2011. Mixing and dispersion of particle ropes in lean phase pneumatic conveying. Powder Technology, 119(2-3):134-152.
[7]Burger, M., Klose, G., Rottenkolber, G., et al., 2002. A combined Eulerian and Lagrangian method for prediction of evaporating sprays. Journal of Engineering for Gas Turbines and Power, 124:481-488.
[8]Chen, H.J., Zhang, B.Z., Su, X.Y., 2003. Low frequency oscillatory flow in a rotating curved pipe. Journal of Zhejiang University-SCIENCE, 4(4):407-414.
[9]Crawford, N., Spence, S., Simpson, A., et al., 2009. A numerical investigation of the flow structures and losses for turbulent flow in 90 degrees elbow bends. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 223(1):27-44.
[10]Fan, J.R., Yao, J., Cen, K.F., 2002. Antierosion in a 90 degrees bend by particle impaction. AIChE Journal, 48(7):1401-1412.
[11]He, Y.L., Zhao, C.F., Ding, W.J., et al., 2007. Two-dimensional numerical simulation and performance analysis of tapered pulse tube refrigerator. Applied Thermal Engineering, 27(11-12):1876-1882.
[12]Holley, B., Faghri, A., 2005. Analysis of pulsating heat pipe with capillary wick and varying channel diameter. International Journal of Heat and Mass Transfer, 48(13):2635-2651.
[13]Iacovides, H., Launder, B.E., Loizou, P.A., et al., 1990. Turbulent boundary-layer development around a square-sectioned U-bend measurements and computation. Journal of Fluids Engineering, 112(4):409-415.
[14]Kim, S., Park, J.H., Kojasoy, G., et al., 2007. Geometric effects of 90-degree elbow in the development of interfacial structures in horizontal bubbly flow. Nuclear Engineering and Design, 237(20-21):2105-2113.
[15]Kim, S., Kojasoy, G., Guo, T.W., 2010. Two-phase minor loss in horizontal bubbly flow with elbows: 45 degrees and 90 degrees elbows. Nuclear Engineering and Design, 240(2):284-289.
[16]Kolmogorov, A.N., 1949. On the disintegration of drops in a turbulent flow. Doklady Akademii Nauk SSSR, 66:825.
[17]Kuan, B., Yang, W., Schwarz, M.P., 2007. Dilute gas-solid two-phase flows in a curved 90 degrees duct bend: CFD simulation with experimental validation. Chemical Engineering Science, 62(7):2068-2088.
[18]Launder, B.E., Spalding, D.B., 1972. Lectures in Mathematical Models of Turbulence. Academic Press, London, UK.
[19]Li, T.W., Pougatch, K., Salcudean, M., et al., 2010. Numerical simulation of an evaporative spray in a gas-solid crossflow. International Journal of Chemical Reactor Engineering, 8(1):A43.
[20]Liu, Y., Miwa, S., Hibiki, T., et al., 2012. Experimental study of internal two-phase flow induced fluctuating force on a 90 degrees elbow. Chemical Engineering Science, 76: 173-187.
[21]Moukalled, F., Darwish, M., 2008. Mixing and evaporation of liquid droplets injected into an air stream flowing at all speeds. Physics of Fluids, 20:040804.
[22]Njobuenwu, D.O., Fairweather, M., Yao, J., 2012. Prediction of turbulent gas-solid flow in a duct with a 90 degrees bend using an Eulerian-Lagrangian approach. AIChE Journal, 58(1):14-30.
[23]Paliwoda, A., 1992. Generalized method of pressure drop calculation across pipe components containing two-phase flow of refrigerants. International Journal of Refrigeration, 15(2):119-125.
[24]Rutten, F., Meinke, M., Schroder, W., 2001. Large-eddy simulations of 90 degrees pipe bend flows. Journal of Turbulence, 2(3):1-14.
[25]Schiller, L., Naumann, A., 1935. A drag coefficient correlation. Zeitschrift Des Vereines Deutscher Ingenieure, 77:318-320.
[26]Shiraishi, M., Ikeguchi, T., Murakami, M., et al., 2002. Visualization of oscillatory flow phenomena in tapered pulse tube refrigerators. AIP Conference Proceedings, 613(1):768-775.
[27]Spedding, P.L., Benard, E., 2007. Gas-liquid two phase flow through a vertical 90 degrees elbow bend. Experimental Thermal and Fluid Science, 31(7):761-769.
[28]Spedding, P.L., Benard, E., Donnelly, G.F., 2006. Prediction of pressure drop in multiphase horizontal pipe flow. International Communications in Heat and Mass Transfer, 33(9):1053-1062.
[29]Sroka, L.M., Forney, L.J., 1989. Fluid mixing in a 90-degrees pipeline elbow. Industrial & Engineering Chemistry Research, 28(6):850-856.
[30]Tunstall, M.J., Harvey, J.K., 1968. On effect of a sharp bend in a fully developed turbulent pipe-flow. Journal of Fluid Mechanics, 34(3):595-608.
[31]Vashisth, S., Grace, J.R., 2012. Simulation of granular transport of Geldart type-A, -B, and -D particles through a 90 degrees elbow. Industrial & Engineering Chemistry Research, 51(4):2030-2047.
[32]Wang, C.C., Chen, I.Y., Yang, Y.W., et al., 2003. Two-phase flow pattern in small diameter tubes with the presence of horizontal return bend. International Journal of Heat and Mass Transfer, 46(16):2975-2981.
[33]Wang, C.C., Chen, I.Y., Yang, Y.W., et al., 2004. Influence of horizontal return bend on the two-phase flow pattern in small diameter tubes. Experimental Thermal and Fluid Science, 28(2-3):145-152.
[34]Weske, J.R., 1948. Experimental investigation of velocity distributions downstream of single dust bends. Technical Report NACA-TN-1471, NASA, Washington DC, USA.
[35]Yang, L.W., 2009. Experimental research of high frequency tapered pulse tube cooler. Cryogenics, 49(12):738-741.
[36]Yao, L.S., Berger, S.A., 1975. Entry flow in a curved pipe. Journal of Fluid Mechanics, 67(1):177-196.
[37]Zhang, H., Tan, Y.Q., Yang, D.M., et al., 2012. Numerical investigation of the location of maximum erosive wear damage in elbow: effect of slurry velocity, bend orientation and angle of elbow. Powder Technology, 217: 467-476.
[38]Zhang, P.S., Roberts, R.M., Benard, A., 2013. Numerical simulation of turbulent mist flows with liquid film formation in curved pipes using an Eulerian–Eulerian method. Journal of Fluids Engineering, 135(9):091303.
Open peer comments: Debate/Discuss/Question/Opinion
<1>