CLC number:
On-line Access: 2022-08-22
Received: 2021-12-07
Revision Accepted: 2022-03-17
Crosschecked: 2022-08-30
Cited: 0
Clicked: 1162
Ru-bing LIU, Xiao-yin MEI, Sheng-hui XUE, Yu-wen LU, Zhe-zhe SU, Qi LIN. Active flow control of S-duct by plasma synthetic jet[J]. Journal of Zhejiang University Science A, 2022, 23(8): 652-668.
@article{title="Active flow control of S-duct by plasma synthetic jet",
author="Ru-bing LIU, Xiao-yin MEI, Sheng-hui XUE, Yu-wen LU, Zhe-zhe SU, Qi LIN",
journal="Journal of Zhejiang University Science A",
volume="23",
number="8",
pages="652-668",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2100618"
}
%0 Journal Article
%T Active flow control of S-duct by plasma synthetic jet
%A Ru-bing LIU
%A Xiao-yin MEI
%A Sheng-hui XUE
%A Yu-wen LU
%A Zhe-zhe SU
%A Qi LIN
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 8
%P 652-668
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2100618
TY - JOUR
T1 - Active flow control of S-duct by plasma synthetic jet
A1 - Ru-bing LIU
A1 - Xiao-yin MEI
A1 - Sheng-hui XUE
A1 - Yu-wen LU
A1 - Zhe-zhe SU
A1 - Qi LIN
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 8
SP - 652
EP - 668
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2100618
Abstract: flow separation and secondary flow in the s-duct of an aircraft engine cause severe pressure loss and airflow distortion at the outlet, lowering engine performance. Herein, a serial two-electrode plasma synthetic jet (PSJ) actuator array is used to actively control the flow field in the duct and improve its characteristics. The results show that the PSJ significantly increases the wall pressure recovery coefficient, suppresses flow separation, and improves the outlet pressure distortion. The primary and secondary orders of the influencing factors are as follows: control position>jet momentum coefficient>excitation frequency>jet configuration. The best jet control position is near the separation location, and the best jet configuration is the ‘Λ’ configuration. The higher the jet momentum coefficient and excitation frequency, the better the flow control. The wall pressure coefficient increases by up to 127.8%, and the outlet steady pressure distortion index decreases by 9.15%. The control mechanism is the direct energy injection into the flow boundary layer through a high-speed jet and the indirect control effect of the induced streamwise vortex. On the one hand, the PSJ suppresses flow separation by improving the ability of the boundary layer to resist the inverse pressure gradient. On the other hand, it reduces pressure distortion by decreasing the intensity of the secondary flow and weakening the backflow. This study thus provides a new technology for the active control of the flow-field characteristics in an s-duct and has significance for guiding the application of synthetic jet technology in s-ducts.
[1]AmitayM, PittD, GlezerA, 2002. Separation control in duct flows. Journal of Aircraft, 39(4):616-620.
[2]AndersonBH, GibbJ, 1992. Application of computational fluid dynamics to the study of vortex flow control for the management of inlet distortion. Proceedings of the 28th Joint Propulsion Conference and Exhibit.
[3]BallWH, 1985. Tests of wall suction and blowing in highly offset diffusers. Journal of Aircraft, 22(3):161-167.
[4]ChedevergneF, LeonO, BodocV, et al., 2015. Experimental and numerical response of a high-Reynolds-number M=0.6 jet to a plasma synthetic jet actuator. International Journal of Heat and Fluid Flow, 56:1-15.
[5]ChenZJ, WangJJ, 2012. Numerical investigation on synthetic jet flow control inside an S-inlet duct. Science China Technological Sciences, 55(9):2578-2584.
[6]CybykBZ, SimonDH, LandIII HB, et al., 2006. Experimental characterization of a supersonic flow control actuator. Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit.
[7]DebiasiM, HerbergMR, YanZ, et al., 2008. Control of flow separation in S-ducts via flow injection and suction. Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit.
[8]DelotAL, GarnierE, PaganD, 2011. Flow control in a high-offset subsonic air intake. Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.
[9]DongXR, ChenYH, DongG, et al., 2016. Research on control of hypersonic shock wave/boundary layer interactions by double micro-ramps. Acta Armamentarii, 37(9):1624-1632 (in Chinese).
[10]EmerickT, AliMY, FosterC, et al., 2014. SparkJet characterizations in quiescent and supersonic flowfields. Experiments in Fluids, 55(12):1858.
[11]GarnierE, LeplatM, MonnierJC, et al., 2012. Flow control by pulsed jet in a highly bended S-duct. Proceedings of the 6th AIAA Flow Control Conference.
[12]GissenAN, VukasinovicB, McMillanML, et al., 2014. Distortion management in a boundary layer ingestion inlet diffuser using hybrid flow control. Journal of Propulsion and Power, 30(3):834-844.
[13]GrossmanKR, CybykBZ, VanWieDM, 2003. Sparkjet actuators for flow control. Proceedings of the 41st Aerospace Sciences Meeting and Exhibit.
[14]GuRY, ShanY, ZhangJZ, et al., 2018. Numerical study on transport aircraft after-body flow separation control by spark jet. Journal of Aerospace Power, 33(8):1855-1863 (in Chinese).
[15]HarrisonNA, AndersonJ, FlemingJL, et al., 2013. Active flow control of a boundary layer-ingesting serpentine inlet diffuser. Journal of Aircraft, 50(1):262-271.
[16]HeP, DongJZ, 2015. Effect of slot orientation on synthetic jet-based separation control in a serpentine inlet. Journal of Aerospace Power, 30(2):306-314 (in Chinese).
[17]HuangEL, KangJX, WangP, et al., 2013. An investigation of micro-jet control in a compact S-shaped intake. Gas Turbine Technology, 26(3):21-27 (in Chinese).
[18]JenkinsLN, GortonSA, AndersSG, 2002. Flow control device evaluation for an internal flow with an adverse pressure gradient. Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit.
[19]JiaYH, LiangH, ZongHH, et al., 2022. Flow separation control in S-shaped∼inlet with a nanosecond pulsed surface dielectric barrier discharge plasma actuator. Journal of Physics D: Applied Physics, 55(5):055201.
[20]JiangH, LiuJ, LuoSC, et al., 2020. Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(9):745-760.
[21]LiBB, ChenGKM, GuYS, 2012. Separation flow control of beveled synthetic jet actuator in S-shaped inlet. Journal of Experiments in Fluid Mechanics, 26(2):34-37 (in Chinese).
[22]LinQ, GuoRW, 1989. Vortex control investigation of swirl in S-shaped diffuser. Acta Aeronautica et Astronautica Sinica, 10(1):35-40 (in Chinese).
[23]LiuRB, NiuZG, WangMM, et al., 2015. Aerodynamic control of NACA 0021 airfoil model with spark discharge plasma synthetic jets. Science China Technological Sciences, 58(11):1949-1955.
[24]LiuRB, LinRX, LianGC, et al., 2021. Multichannel plasma synthetic jet actuator driven by Marx high-voltage generator. AIAA Journal, 59(9):3417-3430.
[25]MathisR, DukeD, KitsiosV, et al., 2008. Use of zero-net-mass-flow for separation control in diffusing S-duct. Experimental Thermal and Fluid Science, 33(1):169-172.
[26]MengT, DongJZ, WuXY, 2016. Active flow control with fluidic in S-shaped inlet. Science Technology and Engineering, 16(32):319-324 (in Chinese).
[27]NgYT, LuoSC, LimTT, et al., 2011. Three techniques to control flow separation in an S-shaped duct. AIAA Journal, 49(9):1825-1832.
[28]NingL, TanHJ, SunS, 2017. Effects of boundary layer ingestion on flow characteristics of an S-shaped inlet. Journal of Propulsion Technology, 38(2):266-274 (in Chinese).
[29]PanJJ, 2014. Research on the Flow Field Characteristics and Flow Control of S-shaped Inlet. MS Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China(in Chinese).
[30]SahniO, OllesJ, JansenKE, 2009. Simulation of flow control in a serpentine duct. Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.
[31]SaryG, DufourG, RogierF, et al., 2014. Modeling and parametric study of a plasma synthetic jet for flow control. AIAA Journal, 52(8):1591-1603.
[32]SchlichtingH, GerstenK, 2017. Boundary-Layer Theory. Springer, Berlin, Germany.
[33]ShinJY, KimHJ, KimKH, 2021. Development of one-dimensional analytical model for a SparkJet actuator. AIAA Journal, 59(3):1055-1074.
[34]SunJ, NiuZG, LiuRB, et al., 2019. The wind tunnel test of the active flow control on the flying wing model based on the plasma synthetic jet. Journal of Experiments in Fluid Mechanics, 33(4):81-88 (in Chinese).
[35]TangMX, WuY, WangHY, et al., 2018. Characterization of transverse plasma jet and its effects on ramp induced separation. Experimental Thermal and Fluid Science, 99:584-594.
[36]VaccaroJC, ElimelechY, ChenY, et al., 2015. Experimental and numerical investigation on steady blowing flow control within a compact inlet duct. International Journal of Heat and Fluid Flow, 54:143-152.
[37]WangHY, LiJ, JinD, et al., 2018. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation. Acta Astronautica, 142:45-56.
[38]WangP, ShenCB, 2019. Characteristics of mixing enhancement achieved using a pulsed plasma synthetic jet in a supersonic flow. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(9):701-713.
[39]WengPF, GuoRW, 1992. New method of swirl control in a diffusing S-duct. AIAA Journal, 30(7):1918-1919.
[40]WojewodkaMM, WhiteC, ShahparS, et al., 2018. A review of flow control techniques and optimisation in S-shaped ducts. International Journal of Heat and Fluid Flow, 74:223-235.
[41]ZhouY, XiaZX, LuoZB, et al., 2018. Experimental characteristics of a two-electrode plasma synthetic jet actuator array in serial. Chinese Journal of Aeronautics, 31(12):2234-2247.
[42]ZhouY, XiaZX, LuoZB, et al., 2019. Characterization of three-electrode SparkJet actuator for hypersonic flow control. AIAA Journal, 57(2):879-885.
[43]ZhouY, LuoZB, WangL, et al., 2022. Plasma synthetic jet actuator for flow control: review. Acta Aeronauticaet Astronautica Sinica, 43(3):025027 (in Chinese).
[44]ZongHH, KotsonisM, 2017a. Interaction between plasma synthetic jet and subsonic turbulent boundary layer. Physics of Fluids, 29(4):045104.
[45]ZongHH, KotsonisM, 2017b. Realisation of plasma synthetic jet array with a novel sequential discharge. Sensors and Actuators A: Physical, 266:314-317.
[46]ZongHH, KotsonisM, 2018. Formation, evolution and scaling of plasma synthetic jets. Journal of Fluid Mechanics, 837:147-181.
[47]ZongHH, ChiattoM, KotsonisM, et al., 2018. Plasma synthetic jet actuators for active flow control. Actuators, 7(4):77.
Open peer comments: Debate/Discuss/Question/Opinion
<1>