Full Text:   <3609>

CLC number: Q36; S43

On-line Access: 

Received: 2008-07-24

Revision Accepted: 2008-08-10

Crosschecked: 0000-00-00

Cited: 4

Clicked: 6713

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2008 Vol.9 No.10 P.802-810

http://doi.org/10.1631/jzus.B0860001


Fluorescent co-localization of PTS1 and PTS2 and its application in analysis of the gene function and the peroxisomal dynamic in Magnaporthe oryzae


Author(s):  Jiao-yu WANG, Xiao-yan WU, Zhen ZHANG, Xin-fa DU, Rong-yao CHAI, Xiao-hong LIU, Xue-qin MAO, Hai-ping QIU, Yan-li WANG, Fu-cheng LIN, Guo-chang SUN

Affiliation(s):  Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; more

Corresponding email(s):   jiaoyuwang1@gmail.com, fuchenglin@zju.edu.cn, sungc01@sina.com

Key Words:  Peroxisomal targeting signal (PTS), Peroxisomal localization, MGPEX6 gene, Magnaporthe oryzae


Jiao-yu WANG, Xiao-yan WU, Zhen ZHANG, Xin-fa DU, Rong-yao CHAI, Xiao-hong LIU, Xue-qin MAO, Hai-ping QIU, Yan-li WANG, Fu-cheng LIN, Guo-chang SUN. Fluorescent co-localization of PTS1 and PTS2 and its application in analysis of the gene function and the peroxisomal dynamic in Magnaporthe oryzae[J]. Journal of Zhejiang University Science B, 2008, 9(10): 802-810.

@article{title="Fluorescent co-localization of PTS1 and PTS2 and its application in analysis of the gene function and the peroxisomal dynamic in Magnaporthe oryzae",
author="Jiao-yu WANG, Xiao-yan WU, Zhen ZHANG, Xin-fa DU, Rong-yao CHAI, Xiao-hong LIU, Xue-qin MAO, Hai-ping QIU, Yan-li WANG, Fu-cheng LIN, Guo-chang SUN",
journal="Journal of Zhejiang University Science B",
volume="9",
number="10",
pages="802-810",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0860001"
}

%0 Journal Article
%T Fluorescent co-localization of PTS1 and PTS2 and its application in analysis of the gene function and the peroxisomal dynamic in Magnaporthe oryzae
%A Jiao-yu WANG
%A Xiao-yan WU
%A Zhen ZHANG
%A Xin-fa DU
%A Rong-yao CHAI
%A Xiao-hong LIU
%A Xue-qin MAO
%A Hai-ping QIU
%A Yan-li WANG
%A Fu-cheng LIN
%A Guo-chang SUN
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 10
%P 802-810
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0860001

TY - JOUR
T1 - Fluorescent co-localization of PTS1 and PTS2 and its application in analysis of the gene function and the peroxisomal dynamic in Magnaporthe oryzae
A1 - Jiao-yu WANG
A1 - Xiao-yan WU
A1 - Zhen ZHANG
A1 - Xin-fa DU
A1 - Rong-yao CHAI
A1 - Xiao-hong LIU
A1 - Xue-qin MAO
A1 - Hai-ping QIU
A1 - Yan-li WANG
A1 - Fu-cheng LIN
A1 - Guo-chang SUN
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 10
SP - 802
EP - 810
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0860001


Abstract: 
The peroxisomal matrix proteins involved in many important biological metabolism pathways in eukaryotic cells are encoded by nucleal genes, synthesized in the cytoplasm and then transported into the organelles. Targeting and import of these proteins depend on their two peroxisomal targeting signals (PTS1 and PTS2) in sequence as we have known so far. The vectors of the fluorescent fusions with PTS, i.e., green fluorescence protein (GFP)-PTS1, GFP-PTS2 and red fluorescence protein (RFP)-PTS1, were constructed and introduced into Magnaporthe oryzae Guy11 cells. Transformants containing these fusions emitted fluorescence in a punctate pattern, and the locations of the red and green fluorescence overlapped exactly in RFP-PTS1 and GFP-PTS2 co-transformed strains. These data indicated that both PTS1 and PTS2 fusions were imported into peroxisomes. A probable higher efficiency of PTS1 machinery was revealed by comparing the fluorescence backgrounds in GFP-PTS1 and GFP-PTS2 transformants. By introducing both RFP-PTS1 and GFP-PTS2 into Δmgpex6 mutants, the involvement of MGPEX6 gene in both PTS1 and PTS2 pathways was proved. In addition, using these transformants, the inducement of peroxisomes and the dynamic of peroxisomal number during the pre-penetration processes were investigated as well. In summary, by the localization and co-localization of PTS1 and PTS2, we provided a useful tool to evaluate the biological roles of the peroxisomes and the related genes.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Bhambra, G.K., Wang, Z.Y., Soanes, D.M., Wakley, G.E., Talbot, N.J., 2006. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Molecular Microbiology, 61(1):46-60.

[2] Bourett, T.M., Howard, R.J., 1992. Actin in penetration pegs of the fungal rice blast pathogen, Magnaporthe grisea. Protoplasma, 168(1-2):20-26.

[3] Elgersma, Y., Tabak, H.F., 1996. Proteins involved in peroxisome biogenesis and functioning. Biochim. Biophys. Acta Rev. Biomembr., 1286(3):269-283.

[4] Glover, J.R., Andrews, D.W., Subramani, S., Rachubinski, R.A., 1994. Mutagenesis of the amino targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo. J. Biol. Chem., 269(10):7558-7563.

[5] Gould, S.J., Valle, D., 2000. Peroxisome biogenesis disorders: genetics and cell biology. TIG, 16(8):340-345.

[6] Gray, R.H., La DeIglesia, F.A., 1984. Quantitative microscopy comparison of peroxisome proliferation by the lipid-regulating agent gemfibrozil in several species. Hepatology, 4(3):520-530.

[7] Hayashi, M., Yagi, M., Nito, K., Kamada, T., Nishimura, M., 2005. Differential contribution of two peroxisomal protein receptors to the maintenance of peroxisomal functions in arabidopsis. J. Biol. Chem., 280(15):14829-14835.

[8] Hettema, E.H., Distel, B., Tabak, H.F., 1999. Import of proteins into peroxisomes. Biochimica et Biophysica Acta, 1451:17-34.

[9] Howard, R.J., Ferrari, M.A., 1989. Role of melanin in appressorium function. Experimental Mycology, 13(4):403-418.

[10] Howard, R.J., Ferrari, M.A., Roach, D.H., Money, N.P., 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci., 88(24):11281-11284.

[11] Johnson, T.L., Olsen, L., 2001. Building new models for peroxisome biogenesis. Plant Physiol., 127(3):731-739.

[12] Kato, A., Hayashi, M., Kondo, M., Nishimura, M., 1996. Targeting and processing of a chimeric protein with the N-terminal presequence of the precursor to glyoxysomal citrate synthase. Plant Cell, 8(9):1601-1611.

[13] Kimura, A., Takano, Y., Furusawa, I., Okuno, T., 2001. Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell, 13(8):1945-1957.

[14] Lazarow, P.B., Fujiki, Y., 1985. Biogenesis of peroxisomes. Annu. Rev. Cell Biol., 1(1):489-530.

[15] Maggio-Hall, L.A., Keller, N.P., 2004. Mitochondrial β-oxidation in Aspergillus nidulans. Molecular Microbiology, 54(5):1173-1185.

[16] Mano, S., Nakamori, C., Nito, K., Kondo, M., Nishimura, M., 2006. The Arabidopsis pex12 and pex13 mutants are defective in both PTS1- and PTS2-dependent protein transport to peroxisomes. The Plant Journal, 47(4):604-618.

[17] Müller, W.H., van der Krift, T.P., Krouwer, A.J.J., Wosten, H.A.B., van der Voort, L.H.M., Smaal, E.B., Verkleij, A.J., 1991. Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J., 10(2):489-495.

[18] Mullins, E.D., Romaine, C.P., Chen, X., Geiser, D., Raina, R., Kang, S., 2001. Agrobacterium tumefaciens-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology, 91(2):173-180.

[19] Notteghem, J.L., Silue, D., 1992. Distribution of the mating alleles of Magnaporthe grisea populations pathogenic on rice. Phytopathology, 82(4):421-423.

[20] Pall, M.L., Brunelli, J.P., 1993. A series of six compact fungal transformation vectors containing polylinkers with multiple unique restriction sites. Fungal Genet. Newsl., 40:59-62.

[21] Purdue, P.E., Lazarow, P.B., 2001. Peroxisome biogenesis. Annu. Rev. Cell Dev. Biol., 17(1):701-752.

[22] Ramos-Pamplona, M., Naqvi, N.I., 2006. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Molecular Microbiology, 61(1):61-75.

[23] Rossman, A.Y., Howard, R.J., Valent, B., 1990. Pyricularia grisea, the correct name for the rice blast disease fungus. Mycologia, 82(4):509-512.

[24] Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

[25] Soundararajan, S., Jedd, G., Li, X., Ramos-Pamplon, M., Chua, N.H., Naqvi, N.I., 2004. Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell, 16(6):1564-1574.

[26] Stasyk, O.V., Stasyk, O.G., Mathewson, R.D., Farré, J.C., Nazarko, V.Y., Krasovska, O.S., Subramani, S., Cregg, J.M., Sibirny, A.A., 2006. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy, 2(1):30-38.

[27] Subramani, S., 1998. Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiological Reviews, 78(1):171-188.

[28] Talbot, N.J., Ebbole, D.J., Hamer, J.E., 1993. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 5(11):1575-1590.

[29] van den Bosch, H., Schutgens, R.B.H., Wanders, R.J., Tager, J.M., 1992. Biochemistry of peroxisomes. Annu. Rev. Biochem., 61(1):157-197.

[30] Veenhuis, M., Mateblowski, M., Kunau, W.H., Harder, W., 1987. Proliferation of microbodies in Saccharomyces cerevisiae. Yeast, 3(2):77-84.

[31] Wang, J.Y., Liu, X.H., Lu, J.P., Lin, F.C., 2005. Sequence analysis and expression pattern of MGTA1 gene in rice blast pathogen Magnaporthe grisea. J. Zhejiang Univ. Sci. B, 6(8):817-824.

[32] Wang, Z.Y., Thornton, C.R., Kershaw, M.J., Li, D.B., Talbot, N.J., 2003. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Molecular Microbiology, 47(6):1601-1612.

[33] Wang, Z.Y., Soanes, D.M., Kershaw, M.J., Talbot, N.J., 2007. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. MPMI, 20(5):475-491.

[34] Weber, R.W.S., Wakley, G.E., Thines, E., Talbot, N.J., 2001. The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma, 216(1-2):101-112.

[35] Yahraus, T., Braverman, N., Dodt, G., Kalish, J.E., Morrell, J.C., Moser, H.W., Valle, D., Gould, S.J., 1996. The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J., 15(12):2914-2923.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE