Full Text:   <3392>

CLC number: Q25

On-line Access: 

Received: 2008-08-11

Revision Accepted: 2008-08-30

Crosschecked: 0000-00-00

Cited: 4

Clicked: 6541

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2008 Vol.9 No.10 P.793-796

http://doi.org/10.1631/jzus.B0860013


Investigation of the biological roles of autophagy in appressorium morphogenesis in Magnaporthe oryzae


Author(s):  Xiao-hong LIU, Fu-cheng LIN

Affiliation(s):  State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310029, China

Corresponding email(s):   fuchenglin@zju.edu.cn

Key Words:  Magnaporthe oryzae, Appressorium, Gene expression, Autophagy


Xiao-hong LIU, Fu-cheng LIN. Investigation of the biological roles of autophagy in appressorium morphogenesis in Magnaporthe oryzae[J]. Journal of Zhejiang University Science B, 2008, 9(10): 793-796.

@article{title="Investigation of the biological roles of autophagy in appressorium morphogenesis in Magnaporthe oryzae",
author="Xiao-hong LIU, Fu-cheng LIN",
journal="Journal of Zhejiang University Science B",
volume="9",
number="10",
pages="793-796",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0860013"
}

%0 Journal Article
%T Investigation of the biological roles of autophagy in appressorium morphogenesis in Magnaporthe oryzae
%A Xiao-hong LIU
%A Fu-cheng LIN
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 10
%P 793-796
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0860013

TY - JOUR
T1 - Investigation of the biological roles of autophagy in appressorium morphogenesis in Magnaporthe oryzae
A1 - Xiao-hong LIU
A1 - Fu-cheng LIN
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 10
SP - 793
EP - 796
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0860013


Abstract: 
Magnaporthe oryzae has been used as a primary model organism for investigating fungus-plant interaction. Many researches focused on molecular mechanisms of appressorium formation to restrain this fungal pathogen. autophagy is a very high conserved process in eukaryotic cells. Recently, autophagy has been considered as a key process in development and differentiation in M. oryzae. In this report, we present and discuss the current state of our knowledge on gene expression in appressorium formation and the progress in autophagy of rice blast fungi.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Kulkarni, R., Xu, J.R., Pan, H., et al., 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434(7036):980-986.

[2] Dufresne, M., Bailey, J.A., Dron, M., Langin, T., 1998. clk1, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean. Mol. Plant Microbe Interact., 11(2):99-108.

[3] Klionsky, D.J., 2005. The molecular machinery of autophagy: unanswered questions. J. Cell Sci., 118(Pt 1):7-18.

[4] Komduur, J.A., Veenhuis, M., Kiel, J.A., 2003. The Hansenula polymorpha PDD7 gene is essential for macropexophagy and microautophagy. FEMS Yeast Res., 3(1):27-34.

[5] Kuroyanagi, H., Yan, J., Seki, N., Yamanouchi, Y., Suzuki, Y., Takano, T., Muramatsu, M., Shirasawa, T., 1998. Human ULK1, a novel serine/threonine kinase related to UNC-51 kinase of Caenorhabditis elegans: cDNA cloning, expression, and chromosomal assignment. Genomics, 51(1):76-85.

[6] Lee, Y.H., Dean, R.A., 1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell, 5(6):693-700.

[7] Levine, B., Klionsky, D.J., 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell, 6(4):463-477.

[8] Liu, S., Dean, R.A., 1997. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol. Plant Microbe Interact., 10(9):1075-1086.

[9] Liu, T.B., Lu, J.P., Liu, X.H., Min, H., Lin, F.C., 2008. A simple and effective method for total RNA isolation of appressoria in Magnaporthe oryzae. J. Zhejiang Univ. Sci. B, 9(10):811-817.

[10] Liu, X.H., Lu, J.P., Zhang, L., Dong, B., Min, H., Lin, F.C., 2007. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot. Cell, 6(6):997-1005.

[11] Lu, J.P., Liu, T.B., Lin, F.C., 2005a. Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridization. FEMS Microbiol. Lett., 245(1):131-137.

[12] Lu, J.P., Liu, T.B., Yu, X.Y., Lin, F.C., 2005b. Representative appressorium stage cDNA library of Magnaporthe grisea. J. Zhejiang Univ. Sci. B, 6(2):132-136.

[13] Lu, J.P., Feng, X.X., Liu, X.H., Lu, Q., Wang, H.K., Lin, F.C., 2007. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea. Fungal Genet. Biol., 44(9):819-829.

[14] Lu, Q., Lu, J.P., Li, X.D., Liu, X.H., Min, H., Lin, F.C., 2008. Magnaporthe oryzae MTP1 gene encodes a type III transmembrane protein involved in conidiation and conidial germination. J. Zhejiang Univ. Sci. B, 9(7):511-519.

[15] Liu, X.H., Lu, J.P., Dong, B., Lin, F.C., 2008. Autohagy and the cvt pathway in Magnaporthe oryzae. Unpublished manuscript.

[16] Matsuura, A., Tsukada, M., Wada, Y., Ohsumi, Y., 1997. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192(2):245-250.

[17] Nguyen, Q.B., Kadotani, N., Kasahara, S., Tosa, Y., Mayama, S., Nakayashiki, H., 2008. Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol. Microbiol., 68(6):1348-1365.

[18] Ogura, K., Wicky, C., Magnenat, L., Tobler, H., Mori, I., Muller, F., Ohshima, Y., 1994. Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes. Dev., 8(20):2389-2400.

[19] Ou, S.H., 1985. Rice Diseases, 2nd Ed. Commonwealth Mycological Institute, Kew, UK.

[20] Veneault-Fourrey, C., Barooah, M., Egan, M., Wakley, G., Talbot, N.J., 2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science, 312(5773):580-583.

[21] Xu, J.R., Hamer, J.E., 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes. Dev., 10(21):2696-2706.

[22] Yan, J., Kuroyanagi, H., Kuroiwa, A., Matsuda, Y., Tokumitsu, H., Tomoda, T., Shirasawa, T., Muramatsu, M., 1998. Identification of mouse ULK1, a novel protein kinase structurally related to C. elegans UNC-51. Biochem. Biophys. Res. Commun., 246(1):222-227.

[23] Yorimitsu, T., Klionsky, D.J., 2005. Autophagy: molecular machinery for self-eating. Cell Death Differ., 12(Suppl. 2):1542-1552.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE