CLC number: Q25
On-line Access: 2010-07-04
Received: 2009-12-27
Revision Accepted: 2010-04-07
Crosschecked: 2010-06-13
Cited: 13
Clicked: 6959
Zhong-yuan Su, Ying Li, Xiao-li Zhao, Ming Zhang. All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells[J]. Journal of Zhejiang University Science B, 2010, 11(7): 489-496.
@article{title="All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells",
author="Zhong-yuan Su, Ying Li, Xiao-li Zhao, Ming Zhang",
journal="Journal of Zhejiang University Science B",
volume="11",
number="7",
pages="489-496",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0900415"
}
%0 Journal Article
%T All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells
%A Zhong-yuan Su
%A Ying Li
%A Xiao-li Zhao
%A Ming Zhang
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 7
%P 489-496
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0900415
TY - JOUR
T1 - All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells
A1 - Zhong-yuan Su
A1 - Ying Li
A1 - Xiao-li Zhao
A1 - Ming Zhang
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 7
SP - 489
EP - 496
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0900415
Abstract: bone marrow-derived mesenchymal stem cells are multipotent stem cells, an attractive resource for regenerative medicine. Accumulating evidence suggests that all-trans retinoic acid plays a key role in the development and differentiation of smooth muscle cells. In the present study, we demonstrate, for the first time, that rabbit bone marrow-derived mesenchymal stem cells differentiate into smooth muscle cells upon the treatment with all-trans retinoic acid. all-trans retinoic acid increased the expression of myocardin, caldesmon, 22-kDa smooth muscle cell-specific protein (SM22α), and SM-myosin heavy chains in rabbit bone marrow-derived mesenchymal stem cells, as detected by reverse transcription polymerase chain reaction (PCR). Immunostaining of SM22α and SM-myosin heavy chains using monoclonal antibodies also indicated smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells following the treatment with all-trans retinoic acid. In addition, more than 47% of bone marrow-derived mesenchymal stem cells demonstrated the contractile phenotype of smooth muscle cells. Western blot results showed that SM-1 and SM-2 were highly expressed in the differentiated cells. These results suggest that all-trans retinoic acid may serve as a potent agent for functional smooth muscle cell differentiation in tissue engineering.
[1]Axel, D.I., Frigge, A., Dittmann, J., Runge, H., Spyridopoulos, I., Riessen, R., Viebahn, R., Karsch, K.R., 2001. All-trans retinoic acid regulates proliferation, migration, differentiation, and extracellular matrix turnover of human arterial smooth muscle cells. Cardiovascular Research, 49(4):851-862.
[2]Blum, B., Benvenisty, N., 2008. The tumorigenicity of human embryonic stem cells. Advances in Cancer Research, 100:133-158.
[3]Davani, S., Marandin, A., Mersin, N., Royer, B., Kantelip, B., Herve, P., Etievent, J.P., Kantelip, J.P., 2003. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation, 108(Suppl. 1):II253-II258.
[4]Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P.D., Matteucci, P., Grisanti, S., Gianni, A.M., 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10):3838-3843.
[5]Frid, M.G., Shekhonin, B.V., Koteliansky, V.E., Glukhova, M.A., 1992. Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin. Developmental Biology, 153(2):185-193.
[6]Huang, H., Zhao, X., Chen, L., Xu, C., Yao, X., Lu, Y., Dai, L., Zhang, M., 2006. Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture. Biochemical and Biophysical Research Communications, 351(2):321-327.
[7]Kim, M.R., Jeon, E.S., Kim, Y.M., Lee, J.S., Kim, J.H., 2009. Thromboxane A2 induces differentiation of human mesenchymal stem cells to smooth muscle-like cells. Stem Cells, 27(1):191-199.
[8]Kosaka, C., Sasaguri, T., Komiyama, Y., Takahashi, H., 2001. All-trans retinoic acid inhibits vascular smooth muscle cell proliferation targeting multiple genes for cyclins and cyclin-dependent kinases. Hypertension Research, 24(5):579-588.
[9]Krampera, M., Glennie, S., Dyson, J., Scott, D., Laylor, R., Simpson, E., Dazzi, F., 2003. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101(9):3722-3729.
[10]Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E., Ringden, O., 2003. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology, 31(10):890-896.
[11]Liu, Y.K., Lu, Q.Z., Pei, R., Ji, H.J., Zhou, G.S., Zhao, X.L., Tang, R.K., Zhang, M., 2009. The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: implication for bone tissue engineering. Biomedical Materials, 4(2):025004.
[12]Manabe, I., Owens, G.K., 2001. Recruitment of serum response factor and hyperacetylation of histones at smooth muscle-specific regulatory regions during differentiation of a novel P19-derived in vitro smooth muscle differentiation system. Circulation Research, 88(11):1127-1134.
[13]Neuville, P., Yan, Z., Gidlof, A., Pepper, M.S., Hansson, G.K., Gabbiani, G., Sirsjo, A., 1999. Retinoic acid regulates arterial smooth muscle cell proliferation and phenotypic features in vivo and in vitro through an RARalpha-dependent signaling pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(6):1430-1436.
[14]Oliva, A., Borriello, A., Zeppetelli, S., Di Feo, A., Cortellazzi, P., Ventriglia, V., Criscuolo, M., Zappia, V., Della Ragione, F., 2003. Retinoic acid inhibits the growth of bone marrow mesenchymal stem cells and induces p27Kip1 and p16INK4A up-regulation. Molecular and Cellular Biochemistry, 247(1-2):55-60.
[15]Owens, G.K., Kumar, M.S., Wamhoff, B.R., 2004. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84(3):767-801.
[16]Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., Marshak, D.R., 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411):143-147.
[17]Reyes, M., Dudek, A., Jahagirdar, B., Koodie, L., Marker, P.H., Verfaillie, C.M., 2002. Origin of endothelial progenitors in human postnatal bone marrow. Journal of Clinical Investigation, 109(3):337-346.
[18]Ross, S.A., McCaffery, P.J., Drager, U.C., de Luca, L.M., 2000. Retinoids in embryonal development. Physiological Reviews, 80(3):1021-1054.
[19]Touyz, R.M., El Mabrouk, M., He, G., Wu, X.H., Schiffrin, E.L., 1999. Mitogen-activated protein/extracellular signal-regulated kinase inhibition attenuates angiotensin II-mediated signaling and contraction in spontaneously hypertensive rat vascular smooth muscle cells. Circulation Research, 84(5):505-515.
[20]Tse, W.T., Pendleton, J.D., Beyer, W.M., Egalka, M.C., Guinan, E.C., 2003. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 75(3):389-397.
[21]van der Loop, F.T., Schaart, G., Timmer, E.D., Ramaekers, F.C., van Eys, G.J., 1996. Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. The Journal of Cell Biology, 134(2):401-411.
[22]Wakitani, S., Saito, T., Caplan, A.I., 1995. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle & Nerve, 18(12):1417-1426.
[23]Wang, D., Park, J.S., Chu, J.S., Krakowski, A., Luo, K., Chen, D.J., Li, S., 2004. Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. Journal of Biological Chemistry, 279(42):43725-43734.
[24]Yoon, Y.S., Wecker, A., Heyd, L., Park, J.S., Tkebuchava, T., Kusano, K., Hanley, A., Scadova, H., Qin, G., Cha, D.H., et al., 2005. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. Journal of Clinical Investigation, 115(2):326-338.
Open peer comments: Debate/Discuss/Question/Opinion
<1>