Full Text:   <4434>

CLC number: Q321+.8

On-line Access: 2011-11-04

Received: 2010-10-24

Revision Accepted: 2011-05-06

Crosschecked: 2011-10-05

Cited: 4

Clicked: 5530

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2011 Vol.12 No.11 P.943-950


A recessive gene controlling male sterility sensitive to short daylength/low temperature in wheat (Triticum aestivum L.)

Author(s):  Xiao-dong Chen, Dong-fa Sun, De-fu Rong, Jun-hua Peng, Cheng-dao Li

Affiliation(s):  College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China, Shayang Agricultural Research Institute, Shayang 448200, China, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China, Department of Agriculture, Government of Western Australia, South Perth, WA 6151, Australia

Corresponding email(s):   sundongfa1@mail.hzau.edu.cn

Key Words:  Heterosis, wptms3, Short daylength/low temperature sensitive male sterility, Molecular mapping, Triticum aestivum

Share this article to: More <<< Previous Article|

Xiao-dong Chen, Dong-fa Sun, De-fu Rong, Jun-hua Peng, Cheng-dao Li. A recessive gene controlling male sterility sensitive to short daylength/low temperature in wheat (Triticum aestivum L.)[J]. Journal of Zhejiang University Science B, 2011, 12(11): 943-950.

@article{title="A recessive gene controlling male sterility sensitive to short daylength/low temperature in wheat (Triticum aestivum L.)",
author="Xiao-dong Chen, Dong-fa Sun, De-fu Rong, Jun-hua Peng, Cheng-dao Li",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A recessive gene controlling male sterility sensitive to short daylength/low temperature in wheat (Triticum aestivum L.)
%A Xiao-dong Chen
%A Dong-fa Sun
%A De-fu Rong
%A Jun-hua Peng
%A Cheng-dao Li
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 11
%P 943-950
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000371

T1 - A recessive gene controlling male sterility sensitive to short daylength/low temperature in wheat (Triticum aestivum L.)
A1 - Xiao-dong Chen
A1 - Dong-fa Sun
A1 - De-fu Rong
A1 - Jun-hua Peng
A1 - Cheng-dao Li
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 11
SP - 943
EP - 950
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000371

Utilization of a two-line breeding system via photoperiod-thermo sensitive male sterility has a great potential for hybrid production in wheat (Triticum aestivum L.). 337S is a novel wheat male sterile line sensitive to both short daylength/low temperature and long daylength/high temperature. Five F2 populations derived from the crosses between 337S and five common wheat varieties were developed for genetic analysis. All F1’s were highly fertile while segregation occurred in the F2 populations with a ratio of 3 fertile:1 sterile under short daylength/low temperature. It is shown that male sterility in 337S was controlled by a single recessive gene, temporarily designated as wptms3. Bulked segregant analysis (BSA) coupled with simple sequence repeat (SSR) markers was applied to map the sterile gene using one mapping population. The wptms3 gene was mapped to chromosome arm 1BS and flanked by Xgwm413 and Xgwm182 at a genetic distance of 3.2 and 23.5 cM, respectively. The accuracy and efficiency of marker-assisted selection were evaluated and proved essential for identifying homozygous recessive male sterile genotypes of the wptms3 gene in F2 generation.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Ahmed, T.A., Tsujimoto, H., Sasakuma, T., 2001. QTL analysis of fertility-restoration against cytoplasmic male sterility in wheat. Genes Genet. Syst., 76(1):33-38.

[2]Cao, S.H., Guo, X.L., Liu, D.C., Zhang, X.Q., Zhang, A.M., 2004. Preliminary gene-mapping of photoperiod-thermo sensitive genic male sterility in wheat (Triticum aestivum L.). Acta Genet. Sin., 31(3):293-298 (in Chinese).

[3]Chen, Q.F., 2003. Improving male fertility restoration of common wheat for Triticum timopheevii cytoplasm. Plant Breeding, 122(5):401-404.

[4]Guo, R.X., Sun, D.F., Cheng, X.D., Rong, D.F., Li, C.D., 2006a. Inheritance of photoperiod-sensitive male sterility in wheat. Aust. J. Agric. Res., 57(2):187-192.

[5]Guo, R.X., Sun, D.F., Tan, Z.B., Rong, D.F., Li, C.D., 2006b. Two recessive genes controlling thermophotoperiod-sensitive male sterility in wheat. Theor. Appl. Genet., 112(7):1271-1276.

[6]Holton, T.A., Christopher, J.T., McClure, L., Harker, N., Henry, R.J., 2002. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol. Breeding, 9(2):63-71.

[7]Huang, Q.Y., He, Y.Q., Jing, R.C., Zhu, R.S., Zhu, Y.G., 2000. Mapping of the nuclear fertility restorer gene for HL cytoplasmic male sterility in rice using microsatellite markers. Chin. Sci. Bull., 45(5):430-432.

[8]Jia, J.H., Zhang, D.S., Li, C.Y., Qu, X.P., Wang, S.W., Chamarerk, V., Nguyen, H.T., Wang, B., 2001. Molecular mapping of the reverse thermo-sensitive genic male-sterile gene (rtms1) in rice. Theor. Appl. Genet., 103(4):607-612.

[9]Kihara, H., 1951. Substitution of nucleus and its effects on genome manifestations. Cytologia, 16:177-193.

[10]Kosambi, D.D., 1943. The estimation of map distances from recombination values. Ann. Human Genet., 12(1):172-175.

[11]Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L., 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1(2):174-181.

[12]Lee, D.S., Chen, L.J., Suh, H.S., 2005. Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice (Oryza sativa L.). Theor. Appl. Genet., 111(7):1271-1277.

[13]Li, X.L., Liu, L.K., Hou, N., Liu, G.Q., Liu, C.G., 2005. SSR and SCAR markers linked to the fertility-restoring gene for a D2-type cytoplasmic male-sterile line in wheat. Plant Breeding, 124(4):413-415.

[14]Li, Y.F., Zhao, C.P., Zhang, F.T., Sun, H., Sun, D.F., 2006. Fertility alteration in the photo-thermo-sensitive male sterile line BS20 of wheat (Triticum aestivum L.). Euphytica, 151(2):207-213.

[15]Liu, Z.W., Biyashev, R.M., Saghai Maroof, M.A., 1996. Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor. Appl. Genet., 93(5-6):869-876.

[16]Luo, H.B., He, J.M., Dai, J.T., Liu, X.L., Yang, Y.C., 1998. Studies on the characteristics of seed production of two ecological male sterile lines in wheat. J. Hunan Agric. Univ., 24(2):83-89 (in Chinese).

[17]Ma, J.X., Zhou, R.H., Dong, Y.S., Wang, L.F., Wang, X.M., Jia, J.Z., 2001. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica, 120(2):219-226.

[18]Michelmore, R.W., Paran, I., Kesseli, V., 1991. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS, 88(21):9828-9832.

[19]Murai, K., 1998. Two-Line System for Hybrid Wheat Production Using Photoperiod-Sensitive Cytoplasmic Male Sterility. In: Zhang, A., Huang, T.C. (Eds.), Proceedings of the First International Workshop on Hybrid Wheat. China Agricultural University Press, Beijing, p.37-39 (in Chinese).

[20]Murai, K., 2002. Comparison of two fertility restoration systems against photoperiod-sensitive cytoplasmic male sterility in wheat. Plant Breeding, 121(4):363-365.

[21]Murai, K., Tsunewaki, K., 1993. Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm. Euphytica, 67(1-2):41-48.

[22]Panaud, O., Chen, X., McCouch, S.R., 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol. Gen. Genet., 252(5):597-607.

[23]Peng, J.H., Fahima, T., Röder, M.S., Li, Y.C., Dahan, A., Grama, A., Ronin, Y.I., Korol, A.B., Nevo, E., 1999. Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference in chromosome 1B. Theor. Appl. Genet., 98(6-7):862-872.

[24]Peng, J.H., Fahima, T., Röder, M.S., Huang, Q.Y., Dahan, A., Li, Y.C., Grama, A., Nevo, E., 2000a. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica, 109(3):199-210.

[25]Peng, J.H., Fahima, T., Röder, M.S., Li, Y.C., Grama, A., Nevo, E., 2000b. Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat. New Phytol., 146(1):141-154.

[26]Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W., 1998. A microsatellite map of wheat. Genetics, 149(4):2007-2023.

[27]Rong, D.F., Cao, W.M., 1999. The fertility characters of a novel thermo-photoperiod sensitive male sterile line 337S. Trit. Crops, 19(1):20-24 (in Chinese).

[28]Sasakuma, T., Ohtsuka, I., 1979. Cytoplasmic effects of Aegilops species having D genome in wheat. I. Cytoplasmic differentiation among five species regarding pistilody induction. Seiken. Ziho., 27:59-65.

[29]Senior, M.L., Heun, M., 1993. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome, 36(5):884-889.

[30]Shi, M.S., 1985. The discovery and study of the photosensitive recessive male-sterile rice (Oryza sativa L. Japonica). Sci. Agric. Sin., (2):44-48 (in Chinese).

[31]Soller, M., Brody, T., Genizi, A., 1976. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor. Appl. Genet., 47(1):35-39.

[32]Tan, C.H., Yu, G.D., Yang, P.F., Zhang, Z.H., Pan, Y., Zheng, J., 1992. Preliminary study on sterility of thermo-photo-sensitive genetic male sterile wheat in Chongqing. Southwest China J. Agric. Sci., 5(4):1-6 (in Chinese).

[33]Wang, Y.G., Xing, Q.H., Deng, Q.Y., Liang, F.S., Yuan, L.P., Weng, M.L., Wang, B., 2003. Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5. Theor. Appl. Genet., 107(5):917-921.

[34]Wilson, J.A., Ross, W.M., 1962. Male sterility interaction of the Triticum aestivum nucleus and Triticum timopheevi cytoplasm. Wheat Inf. Serv., 14:29-30.

[35]Wu, K.S., Tanksley, S.D., 1993. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol. Gen. Genet., 241(1-2):225-235.

[36]Xing, Q.H., Ru, Z.G., Zhou, C.J., Xue, X., Liang, C.Y., Yang, D.E., Jin, D.M., Wang, B., 2003. Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene (wtms1) in wheat. Theor. Appl. Genet., 107(8):1500-1504.

[37]Xu, N.Y., Yan, J.Q., 1998. Studies on photoperiod-sensitive cytoplasmic male sterility in wheat. J. Wuhan Bot. Res., 16(2):97-105 (in Chinese).

[38]Xu, S.B., Tao, Y.F., Yang, Z.Q., Chu, J.Y., 2002. A simple and rapid method used for silver staining and gel preservation. Hereditas, 24(3):335-336 (in Chinese).

[39]Zhang, Q.F., Shen, B.Z., Dai, X.K., Mei, M.H., Saghai, M.A.M., Li, Z.B., 1994. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. PNAS, 91(18):8675-8679.

[40]Zhou, W.C., Kolb, F.L., Domier, L.L., Wang, S.W., 2005. SSR markers associated with fertility restoration genes against Triticum timopheevii cytoplasm in Triticum aestivum. Euphytica, 141(1-2):33-40.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE