Full Text:   <1861>

CLC number: R735.3+5

On-line Access: 2012-11-05

Received: 2012-02-07

Revision Accepted: 2012-05-30

Crosschecked: 2012-10-15

Cited: 4

Clicked: 3628

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2012 Vol.13 No.11 P.884-893

10.1631/jzus.B1200037


ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines


Author(s):  Rui Bai, Zhong Shi, Jia-wei Zhang, Dan Li, Yong-liang Zhu, Shu Zheng

Affiliation(s):  Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), the Second Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou 310009, China; more

Corresponding email(s):   zhengshu@zju.edu.cn

Key Words:  Colorectal cancer, ST13, Proliferation, Colony formation, Cell cycle, Migration


Rui Bai, Zhong Shi, Jia-wei Zhang, Dan Li, Yong-liang Zhu, Shu Zheng. ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines[J]. Journal of Zhejiang University Science B, 2012, 13(11): 884-893.

@article{title="ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines",
author="Rui Bai, Zhong Shi, Jia-wei Zhang, Dan Li, Yong-liang Zhu, Shu Zheng",
journal="Journal of Zhejiang University Science B",
volume="13",
number="11",
pages="884-893",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200037"
}

%0 Journal Article
%T ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines
%A Rui Bai
%A Zhong Shi
%A Jia-wei Zhang
%A Dan Li
%A Yong-liang Zhu
%A Shu Zheng
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 11
%P 884-893
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200037

TY - JOUR
T1 - ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines
A1 - Rui Bai
A1 - Zhong Shi
A1 - Jia-wei Zhang
A1 - Dan Li
A1 - Yong-liang Zhu
A1 - Shu Zheng
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 11
SP - 884
EP - 893
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200037


Abstract: 
Background and objective: ST13, is the gene encoding the HSP70 interacting protein (HIP). Previous research has shown that ST13 mRNA and protein levels are down-regulated in colorectal cancer (CRC) tissues compared with adjacent normal tissues. This study aims at the role of ST13 in the proliferation and migration of CRC cells. Methods: The transcript level of ST13 in different CRC cell lines was evaluated by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). ST13-overexpressed and ST13-knockdown CRC cells were constructed respectively by lentiviral transduction, followed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, plate colony formation, cell-cycle analysis, and migration assays to evaluate the influence of ST13 on proliferation and migration in vitro. Moreover, a mouse xenograft study was performed to test in vivo tumorigenicity of ST13-knockdown CRC cells. Results: Lentivirus-mediated overexpression of ST13 in CRC cells inhibited cell proliferation, colony formation, and cell migration in vitro. In contrast, down-regulation of ST13 by lentiviral-based short hairpin RNA (shRNA) interference in CRC cells significantly increased cell proliferation and cloning efficiency in vitro. In addition, down-regulation of ST13 expression significantly increased the tumorigenicity of CRC cells in vivo. Conclusions: ST13 gene is a proliferation regulator that inhibits tumor growth in CRC and may affect cell migration.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Castells, A., Gusella, J.F., Ramesh, V., Rustgi, A.K., 2000. A region of deletion on chromosome 22q13 is common to human breast and colorectal cancers. Cancer Res., 60(11):2836-2839.

[2]Chant, I.D., Rose, P.E., Morris, A.G., 1995. Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry. Br. J. Haematol., 90(1):163-168.

[3]Ciocca, D.R., Clark, G.M., Tandon, A.K., Fuqua, S.A., Welch, W.J., McGuire, W.L., 1993. Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J. Natl. Cancer Inst., 85(7):570-574.

[4]Csermely, P., 1997. Proteins, RNAs and chaperones in enzyme evolution: a folding perspective. Trends Biochem. Sci., 22(5):147-149.

[5]Derynck, R., Akhurst, R.J., Balmain, A., 2001. TGF-β signaling in tumor suppression and cancer progression. Nat. Genet., 29(2):117-129.

[6]Dong, Q.H., Zheng, S., Hu, Y., Chen, G.X., Ding, J.Y., 2005. Evaluation of ST13 gene expression in colorectal cancer patients. J. Zhejiang Univ.-Sci. B., 6(12):1170-1175.

[7]Ge, W., Hu, H., Ding, K., Sun, L., Zheng, S., 2006. Protein interaction analysis of ST14 domains and their point and deletion mutants. J. Biol. Chem., 281(11):7406-7412.

[8]Hartl, F.U., 1996. Molecular chaperones in cellular protein folding. Nature, 381(6583):571-579.

[9]Höhfeld, J., Jentsch, S., 1997. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J., 16(20):6209-6216.

[10]Höhfeld, J., Minami, Y., Hartl, F.U., 1995. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell, 83(4):589-598.

[11]Hollstein, M., Sidransky, D., Vogelstein, B., Harris, C.C., 1991. p53 mutations in human cancers. Science, 253(5015):49-53.

[12]Irmer, H., Höhfeld, J., 1997. Characterization of functional domains of the eukaryotic co-chaperone Hip. J. Biol. Chem., 272(4):2230-2235.

[13]Itoh, S., Itoh, F., Goumans, M.J., Ten Dijke, P., 2000. Signaling of transforming growth factor-β family members through Smad proteins. Eur. J. Biochem., 267(24):6954-6967.

[14]Kimura, E., Enns, R.E., Alcaraz, J.E., Arboleda, J., Slamon, D.J., Howell, S.B., 1993. Correlation of the survival of ovarian cancer patients with mRNA expression of the 60-kD heat-shock protein HSP-60. J. Clin. Oncol., 11(5):891-898.

[15]Lane, D.P., Midgley, C., Hupp, T., 1993. Tumour suppressor genes and molecular chaperones. Philos. Trans. R. Soc. Lond. B Biol. Sci., 339(1289):369-372, discussion 372-373.

[16]Lanneau, D., Brunet, M., Frisan, E., Solary, E., Fontenay, M., Garrido, C., 2008. Heat shock proteins: essential proteins for apoptosis regulation. J. Cell. Mol. Med., 12(3):743-761.

[17]Li, S., Chai, Z., Li, Y., Liu, D., Bai, Z., Li, Y., Li, Y., Situ, Z., 2009. BZW1, a novel proliferation regulator that promotes growth of salivary muocepodermoid carcinoma. Cancer Lett., 284(1):86-94.

[18]Li, Y., Kang, X., Wang, Q., 2011. HSP70 decreases receptor-dependent phosphorylation of Smad2 and blocks TGF-beta-induced epithelial-mesenchymal transition. J. Genet. Genomics, 38(3):111-116.

[19]Mahalingam, D., Swords, R., Carew, J.S., Nawrocki, S.T., Bhalla, K., Giles, F.J., 2009. Targeting HSP90 for cancer therapy. Br. J. Cancer, 100(10):1523-1529.

[20]Mo, Y., Zheng, S., Shen, D., 1996. Differential expression of HSU17714 gene in colorectal cancer and normal colonic mucosa. Chin. J. Oncol., 18(4):241-243 (in Chinese).

[21]Neckers, L., 2007. Heat shock protein 90: the cancer chaperone. J. Biosci., 32(3):517-530.

[22]Piek, E., Roberts, A.B., 2001. Suppressor and oncogenic roles of transforming growth factor-β and its signaling pathways in tumorigenesis. Adv. Cancer Res., 83:1-54.

[23]Powers, M.V., Workman, P., 2007. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett., 581(19):3758-3769.

[24]Prapapanich, V., Chen, S., Nair, S.C., Rimerman, R.A., Smith, D.F., 1996a. Molecular cloning of human p48, a transient component of progesterone receptor complexes and an Hsp70-binding protein. Mol. Endocrinol., 10(4):420-431.

[25]Prapapanich, V., Chen, S., Toran, E.J., Rimerman, R.A., Smith, D.F., 1996b. Mutational analysis of the hsp70-interacting protein Hip. Mol. Cell Biol., 16(11):6200-6207.

[26]Prapapanich, V., Chen, S., Smith, D.F., 1998. Mutation of Hip’s carboxy-terminal region inhibits a transitional stage of progesterone receptor assembly. Mol. Cell Biol., 18(2):944-952.

[27]Ralhan, R., Kaur, J., 1995. Differential expression of Mr 70000 heat shock protein in normal, premalignant, and malignant human uterine cervix. Clin. Cancer Res., 1(10):1217-1222.

[28]Roberts, A.B., 1998. Molecular and cell biology of TGF-β. Miner. Electrolyte Metab., 24(2-3):111-119.

[29]Roberts, A.B., Sporn, M.B., 1993. Physiological actions and clinical applications of transforming growth factor-β (TGF-β). Growth Factors, 8(1):1-9.

[30]Schiffer, M., von Gersdorff, G., Bitzer, M., Susztak, K., Böttinger, E.P., 2000. Smad proteins and transforming growth factor-β signaling. Kidney Int., 58(S77):45-52.

[31]Shi, Z., Bai, R., Fu, Z.X., Zhu, Y.L., Wang, R.F., Zheng, S., 2012. Induced pluripotent stem cell-related genes influence biological behavior and 5-fluorouracil sensitivity of colorectal cancer cells. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 13(1):11-19.

[32]Shi, Z.Z., Zhang, J.W., Zheng, S., 2007. What we know about ST13, a co-factor of heat shock protein, or a tumor suppressor? J. Zhejiang Univ.-Sci. B, 8(3):170-176.

[33]Soo, E.T., Yip, G.W., Lwin, Z.M., Kumar, S.D., Bay, B.H., 2008. Heat shock proteins as novel therapeutic targets in cancer. In. Vivo, 22(3):311-315.

[34]Söti, C., Csermely, P., 2002. Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochem. Int., 41(6):383-389.

[35]Takayama, S., Reed, J.C., Homma, S., 2003. Heat-shock proteins as regulators of apoptosis. Oncogene, 22(56):9041-9047.

[36]Wang, L.B., Zheng, S., Zhang, S.Z., Peng, J.P., Ye, F., Fang, S.C., Wu, J.M., 2005. Expression of ST13 in colorectal cancer and adjacent normal tissues. World J. Gastroenterol., 11(3):336-339.

[37]Whitesell, L., Lindquist, S.L., 2005. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer, 5(10):761-772.

[38]Yang, M., Cao, X., Yu, M.C., Gu, J.F., Shen, Z.H., Ding, M., Yu, D.B., Zheng, S., Liu, X.Y., 2008. Potent antitumor efficacy of ST13 for colorectal cancer mediated by oncolytic adenovirus via mitochondrial apoptotic cell death. Hum. Gene Ther., 19(4):343-353.

[39]Yang, M., Yu, M., Guan, D., Gu, J., Cao, X., Wang, W., Zheng, S., Xu, Y., Shen, Z., Liu, X., 2010. ASK1-JNK signaling cascade mediates Ad-ST13-induced apoptosis in colorectal HCT116 cells. J. Cell. Biochem., 110(3):581-588.

[40]Ye, Y.W., Wu, J.H., Wang, C.M., Zhou, Y., Du, C.Y., Zheng, B.Q., Cao, X., Zhou, X.Y., Sun, M.H., Shi, Y.Q., 2011. Sox17 regulates proliferation and cell cycle during gastric cancer progression. Cancer Lett., 307(2):124-131.

[41]Young, J.C., Agashe, V.R., Siegers, K., Hartl, F.U., 2004. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol., 5(10):781-791.

[42]Yu, D.B., Zhong, S.Y., Yang, M., Wang, Y.G., Qian, Q.J., Zheng, S., Liu, X.Y., 2009. Potent antitumor activity of double-regulated oncolytic adenovirus-mediated ST13 for colorectal cancer. Cancer Sci., 100(4):678-683.

[43]Zhang, Y., Cai, X., Schlegelberger, B., Zheng, S., 1998. Assignment of human putative tumor suppressor genes ST13 (alias SNC6) and ST14 (alias SNC19) to human chromosome bands 22q13 and 11q24→q25 by in situ hybridization. Cytogenet. Cell Genet., 83(1-2):56-57.

[44]Zheng, S., Cai, X., Cao, J., 1997. Application of subtractive hybridization in screening for colorectal cancer negatively related genes. Natl. Med. J. China, 77(4):256-259 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE