Full Text:   <1762>

CLC number: X53

On-line Access: 2013-12-03

Received: 2013-01-04

Revision Accepted: 2013-08-15

Crosschecked: 2013-11-15

Cited: 0

Clicked: 3454

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2013 Vol.14 No.12 P.1144-1151


Accumulation of mercury in rice grain and cabbage grown on representative Chinese soils

Author(s):  Chun-fa Liu, Cheng-xian Wu, Muhammad T. Rafiq, Rukhsanda Aziz, Dan-di Hou, Zhe-li Ding, Zi-wen Lin, Lin-jun Lou, Yuan-yuan Feng, Ting-qiang Li, Xiao-e Yang

Affiliation(s):  Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   litq@zju.edu.cn, xyang571@yahoo.com

Key Words:  Mercury accumulation, Soil safety, Soil types, Rice grain, Cabbage, Intake

Chun-fa Liu, Cheng-xian Wu, Muhammad T. Rafiq, Rukhsanda Aziz, Dan-di Hou, Zhe-li Ding, Zi-wen Lin, Lin-jun Lou, Yuan-yuan Feng, Ting-qiang Li, Xiao-e Yang. Accumulation of mercury in rice grain and cabbage grown on representative Chinese soils[J]. Journal of Zhejiang University Science B, 2013, 14(12): 1144-1151.

@article{title="Accumulation of mercury in rice grain and cabbage grown on representative Chinese soils",
author="Chun-fa Liu, Cheng-xian Wu, Muhammad T. Rafiq, Rukhsanda Aziz, Dan-di Hou, Zhe-li Ding, Zi-wen Lin, Lin-jun Lou, Yuan-yuan Feng, Ting-qiang Li, Xiao-e Yang",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Accumulation of mercury in rice grain and cabbage grown on representative Chinese soils
%A Chun-fa Liu
%A Cheng-xian Wu
%A Muhammad T. Rafiq
%A Rukhsanda Aziz
%A Dan-di Hou
%A Zhe-li Ding
%A Zi-wen Lin
%A Lin-jun Lou
%A Yuan-yuan Feng
%A Ting-qiang Li
%A Xiao-e Yang
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 12
%P 1144-1151
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300004

T1 - Accumulation of mercury in rice grain and cabbage grown on representative Chinese soils
A1 - Chun-fa Liu
A1 - Cheng-xian Wu
A1 - Muhammad T. Rafiq
A1 - Rukhsanda Aziz
A1 - Dan-di Hou
A1 - Zhe-li Ding
A1 - Zi-wen Lin
A1 - Lin-jun Lou
A1 - Yuan-yuan Feng
A1 - Ting-qiang Li
A1 - Xiao-e Yang
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 12
SP - 1144
EP - 1151
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300004

A pot culture experiment was carried out to investigate the accumulation properties of mercury (Hg) in rice grain and cabbage grown in seven soil types (Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols) spiked with different concentrations of Hg (CK, 0.25, 0.50, 1.00, 2.00, and 4.00 mg/kg). The results of this study showed that Hg accumulation of plants was significantly affected by soil types. Hg concentration in both rice grain and cabbage increased with soil Hg concentrations, but this increase differed among the seven soils. The stepwise multiple regression analysis showed that pH, Mn(II), particle size distribution, and cation exchange capacity have a close relationship with Hg accumulation in plants, which suggested that physicochemical characteristics of soils can affect the Hg accumulation in rice grain and cabbage. Critical Hg concentrations in seven soils were identified for rice grain and cabbage based on the maximum safe level for daily intake of Hg, dietary habits of the population, and Hg accumulation in plants grown in different soil types. Soil Hg limits for rice grain in Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols were 1.10, 2.00, 2.60, 2.78, 1.53, 0.63, and 2.17 mg/kg, respectively, and critical soil Hg levels for cabbage are 0.27, 1.35, 1.80, 1.70, 0.69, 1.68, and 2.60 mg/kg, respectively.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Appel, C., Ma, L., 2002. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. J. Environ. Qual., 31(2):581-589.

[2]Chaturvedi, R.K., Sankar, K., 2006. Laboratory Manual for the Physico-Chemical Analysis of Soil, Water and Plant. Wildlife Institute of India, Dehradun, India.

[3]Chou, S., Huang, C., Huang, Y.H., 2001. Heterogeneous and homogeneous catalytic oxidation by supported γ-FeOOH in a fluidized-bed reactor: kinetic approach. Environ. Sci. Technol., 35(6):1247-1251.

[4]Cunningham, S.D., Ow, D.W., 1996. Promises and prospects of phytoremediation. Plant Physiol., 110(3):715-719.

[5]Daniels, B.G., Lindsay, R., Thornton, G., 2001. A review of quantitative structural determinations of adsorbates on metal oxide surfaces. Surf. Rev. Lett., 8(01n02):95-120.

[6]Eto, K., Marumoto, M., Takeya, M., 2010. The pathology of methylmercury poisoning (Minamata disease). Neuropathology, 30(5):471-479.

[7]Fernández-Martínez, R., Loredo, J., Ordóñez, A., Rucandio, M.I., 2006. Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain). Environ. Pollut., 142(2):217-226.

[8]GB 15618-1995. Environmental Quality Standard for Soils. Ministry of Environmental Protection of the People’s Republic of China (in Chinese).

[9]Gee, G.W., Baunder, J.W., 1986. Particle-Size Analysis. In: Klute, A. (Ed.), Methods of Soil Analysis: Part 1— Physical and Mineralogical Methods. The American Society of Agronomy lnc., Soil Science Society of America lnc., Madison, p.383-411.

[10]Gnamuš, A., Byrne, A.R., Horvat, M., 2000. Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environ. Sci. Technol., 34(16):3337-3345.

[11]Gong, Z.T., Lei, W.J., Chen, Z.C., Gao, Y.X., Zeng, S.G., Zhang, G.L., Xiao, D.N., Li, S.G., 2007. Chinese soil taxonomy. Sci. Found. China, 15(1):41-45 (in Chinese).

[12]Harada, M., 1995. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. CRC Crit. Rev. Toxicol., 25(1):1-24.

[13]Hendershot, W.H., Duquette, M., 1986. A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci. Soc. Am. J., 50(3):605-608.

[14]Huckabee, J.W., Sanz Diaz, F., Janzen, S.A., Solomon, J., 1983. Distribution of mercury in vegetation at Almadén, Spain. Environ. Pollut. Ser. A Ecol. Biol., 30(3):211-224.

[15]John, M.K., 1972. Mercury uptake from soil by various plant species. Bull. Environ. Contam. Toxicol., 8(2):77-80.

[16]Khwaja, A.R., Bloom, P.R., Brezonik, P.L., 2006. Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter. Environ. Sci. Technol., 40(3):844-849.

[17]Kooner, Z.S., 1993. Comparative study of adsorption behavior of copper, lead, and zinc onto goethite in aqueous systems. Environ. Geol., 21(4):242-250.

[18]Li, Y., Chen, C., Li, B., Sun, J., Wang, J., Gao, Y., Zhao, Y., Chai, Z., 2006. Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J. Anal. At. Spectrom., 21(1):94-96.

[19]Loring, D.H., Rantala, R., 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci. Rev., 32(4):235-283.

[20]Mathur, S.P., Levesque, M.P., Desjardins, J.G., 1979. The relative immobility of fertilizer and native copper in an organic soil under field conditions. Water Air Soil Pollut., 11(2):207-215.

[21]McIntyre, S.H., Montgomery, D.B., Srinivasan, V., Weitz, B.A., 1983. Evaluating the statistical significance of models developed by stepwise regression. J. Marketing Res., 20(1):1-11.

[22]Morel, F.M.M., Kraepiel, A.M.L., Amyot, M., 1998. The chemical cycle and bioaccumulation of mercury. Ann. Rev. Ecol. Syst., 29(1):543-566.

[23]Munichandraiah, N., McGrath, K., Prakash, G.K., Aniszfeld, R., Olah, G.A., 2003. A potentiometric method of monitoring methanol crossover through polymer electrolyte membranes of direct methanol fuel cells. J. Power Sources, 117(1-2):98-101.

[24]Muñoz, O., Bastias, J.M., Araya, M., Morales, A., Orellana, C., Rebolledo, R., Velez, D., 2005. Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study. Food Chem. Toxicol., 43(11):1647-1655.

[25]OECD (Organisation for Economic Co-operation and Development), 1994. Mercury: Background and National Experience with Reducing Risk. OECD, Paris.

[26]Onduru, D.D., Du Preez, C.C., 2007. Spatial and temporal aspects of agricultural sustainability in the semi-arid tropics: a case study in Mbeere district, Eastern Kenya. Trop. Sci., 47(3):134-148.

[27]Rop, O., Valášek, P., Golian, J., Hoza, I., 2008. Dependence of uptake and distribution of mercury in vegetable plants on increasing content of mercury in soil. Sci. J. Phytotech. Zootech., 11(2):53-56.

[28]Ryan, J., Estefan, G., Rashid, A., 2007. Soil and Plant Analysis Laboratory Manual. International Center for Agricultural Research in the Dry Areas, Aleppo, Syria.

[29]Schnell, S., Ratering, S., Jansen, K.H., 1998. Simultaneous determination of iron (III), iron (II), and manganese (II) in environmental samples by ion chromatography. Environ. Sci. Technol., 32(10):1530-1537.

[30]Shentu, J.L., He, Z.L., Yang, X.E., Li, T.Q., 2008. Accumulation properties of cadmium in a selected vegetable-rotation system of southeastern China. J. Agric. Food Chem., 56(15):6382-6388.

[31]Sims, J.T., 1986. Soil pH effects on the distribution and plant availability of manganese, copper, and zinc. Soil Sci. Soc. Am. J., 50(2):367-373.

[32]Spark, K.M., Johnson, B.B., Wells, J.D., 1995. Characterizing heavy-metal adsorption on oxides and oxyhydroxides. Eur. J. Soil Sci., 46(4):621-631.

[33]Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., Timberlake, D., 2004. Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ. Pollut., 131(2):323-336.

[34]WHO (World Health Organization), 2002. WHO Technical Report Series: Evaluation of Certain Food Additives and Contaminants. Fifty-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO, Geneva.

[35]WHO (World Health Organization), 2004. Guidelines for Drinking-water Quality, 3rd Ed. WHO, Geneva.

[36]WHO (World Health Organization), 2005. WHO Air Quality Guidelines Global Update. Report on a Working Group Meeting. Bonn, Germany, Oct. 18–20, 2005, WHO Regional Office for Europe.

[37]Yadav, S.K., 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. J. Bot., 76(2):167-179.

[38]Yin, Y., Allen, H.E., Li, Y., Huang, C.P., Sanders, P.F., 1996. Adsorption of mercury(II) by soil: effects of pH, chloride, and organic matter. J. Environ. Qual., 25(4):837-844.

[39]Zhang, H., Feng, X., Larssen, T., Qiu, G., Vogt, R.D., 2010. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ. Health Perspect., 118(9):1183.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE