Full Text:   <493>

Summary:  <188>

CLC number: S158.5

On-line Access: 2016-04-05

Received: 2015-08-28

Revision Accepted: 2015-12-08

Crosschecked: 2016-03-18

Cited: 0

Clicked: 984

Citations:  Bibtex RefMan EndNote GB/T7714


Xiao-chuang Cao


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.4 P.294-302


Effects of ammonium application rate on uptake of soil adsorbed amino acids by rice

Author(s):  Xiao-chuang Cao, Qing-xu Ma, Liang-huan Wu, Lian-feng Zhu, Qian-yu Jin

Affiliation(s):  State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; more

Corresponding email(s):   caoxiaochuang@126.com, finm@zju.edu.cn

Key Words:  Soil adsorbed glycine, Ammonium, Glycine uptake, Glycine bioavailability, Sterile cultivation

Xiao-chuang Cao, Qing-xu Ma, Liang-huan Wu, Lian-feng Zhu, Qian-yu Jin. Effects of ammonium application rate on uptake of soil adsorbed amino acids by rice[J]. Journal of Zhejiang University Science B, 2016, 17(5): 294-302.

@article{title="Effects of ammonium application rate on uptake of soil adsorbed amino acids by rice",
author="Xiao-chuang Cao, Qing-xu Ma, Liang-huan Wu, Lian-feng Zhu, Qian-yu Jin",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Effects of ammonium application rate on uptake of soil adsorbed amino acids by rice
%A Xiao-chuang Cao
%A Qing-xu Ma
%A Liang-huan Wu
%A Lian-feng Zhu
%A Qian-yu Jin
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 4
%P 294-302
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer

T1 - Effects of ammonium application rate on uptake of soil adsorbed amino acids by rice
A1 - Xiao-chuang Cao
A1 - Qing-xu Ma
A1 - Liang-huan Wu
A1 - Lian-feng Zhu
A1 - Qian-yu Jin
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 4
SP - 294
EP - 302
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -

In recent years, excessive use of chemical nitrogen (N) fertilizers has resulted in the accumulation of excess ammonium (NH4+) in many agricultural soils. Though rice is known as an NH4+-tolerant species and can directly absorb soil intact amino acids, we still know considerably less about the role of high exogenous NH4+ content on rice uptake of soil amino acids. This experiment examined the effects of the exogenous NH4+ concentration on rice uptake of soil adsorbed glycine in two different soils under sterile culture. Our data showed that the sorption capacity of glycine was closely related to soils’ physical and chemical properties, such as organic matter and cation exchange capacity. Rice biomass was significantly inhibited by the exogenous NH4+ content at different glycine adsorption concentrations. A three-way analysis of variance demonstrated that rice glycine uptake and glycine nutritional contribution were not related to its sorption capacity, but significantly related to its glycine:NH4+ concentration ratio. After 21-d sterile cultivation, the rice uptake of adsorbed glycine accounted for 8.8%‒22.6% of rice total N uptake, which indicates that soil adsorbed amino acids theoretically can serve as an important N source for plant growth in spite of a high NH4+ application rate. However, further studies are needed to investigate the extent to which this bioavailability is realized in the field using the 13C, 15N double labeling technology.


方法:采集两种不同生态系统的土壤A和B,经0.5 mol/L K2SO4连续淋洗5次,121 °C灭菌30 min,15N-甘氨酸处理后,根据甘氨酸吸附曲线(图1)确定甘氨酸吸附饱和点和吸附半饱和点,然后向土壤中添加一些不同浓度的铵态氮,水稻幼苗无菌培养21天后,用MAT-271质谱仪测定水稻幼苗氨基酸吸收量。
结论:实验结果表明土壤甘氨酸吸附能力大小与土壤理化性质紧密相关, 如有机质和阳离子交换量。外源高铵态氮水平显著抑制水稻幼苗生长发育 (P<0.05),但甘氨酸吸收及其氮营养贡献与甘氨酸吸附能力大小无关,而与土壤吸附态甘氨酸和铵态氮的浓度比值显著相关(P<0.05)。经过21天的无菌培养,土壤吸附态氨基酸对水稻的氮营养贡献率达8.8%~22.6%,表明土壤吸附态氨基酸理论上可能作为植物的一种潜在重要营养氮源。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Balistrieri, L.S., Murray, J.W., 1987. The influence of the major ions of seawater on the adsorption of simple organic acids by goethite. Geochim. Cosmochim. Acta, 51(5):1151-1160.

[2]Balkos, K.D., Britto, D.T., Kronzucker, H.J., 2010. Optimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR-72). Plant Cell Environ., 33(1):23-34.

[3]Barth, C., Gouzd, Z.A., Steele, H.P., et al., 2010. A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis. J. Exp. Bot., 61(2):379-394.

[4]Bijlsma, R.J., Lambers, H., Kooijman, S.A.L.M., 2000. A dynamic whole-plant model of integrated metabolism of nitrogen and carbon. 1. Comparative ecological implications of ammonium-nitrate interactions. Plant Soil, 220(1):49-69.

[5]Britto, D.T., Kronzucker, H.J., 2002. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol., 159(6):567-584.

[6]Britto, D.T., Siddiqi, M.Y., Glass, A.D.M., et al., 2001. Futile transmembrane NH4+ cycling: a cellular hypothesis to explain ammonium toxicity in plants. PNAS, 98(7):4255-4258.

[7]Cao, X.C., Chen, X.Y., Li, X.Y., et al., 2013. Rice uptake of soil adsorbed amino acids under sterilized environment. Soil Biol. Biochem., 62:13-21.

[8]Chen, X.Y., Wu, L.H., Cao, X.C., et al., 2013. An experimental method to quantify extractable amino acids in soils from southeast China. J. Integr. Agric., 12(4):732-736.

[9]Christou, M., Avramides, E.J., Jones, D.L., 2006. Dissolved organic nitrogen dynamics in a Mediterranean vineyard soil. Soil Biol. Biochem., 38(8):2265-2277.

[10]Dashman, T., Stotzky, G., 1984. Adsorption and binding of peptides on homoionic montmorillonite and kaolinite. Soil. Biol. Biochem., 16(1):51-55.

[11]Farrell, M., Prendergast-Miller, M., Jones, D.L., et al., 2014. Soil microbial organic nitrogen uptake is regulated by carbon availability. Soil Biol. Biochem., 77:261-267.

[12]Geisseler, D., Horwath, W.R., 2014. Investigating amino acid utilization by soil microorganisms using compound specific stable isotope analysis. Soil Biol. Biochem., 74:100-105.

[13]Gonod, L.V., Jones, D.L., Chenu, C., 2006. Sorption regulates the fate of the amino acids lysine and leucine in soil aggregates. Eur. J. Soil Sci., 57(3):320-329.

[14]Guo, J.H., Liu, X.J., Zhang, Y., et al., 2010. Significant acidification in major Chinese croplands. Science, 327(5968):1008-1010.

[15]Henry, H.A.L., Jefferies, R.L., 2003. Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh. J. Ecol., 91(4):627-636.

[16]Jones, D.L., Owen, A.G., Farrar, J.F., 2002. Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol. Biochem., 34(12):1893-1902.

[17]Jones, D.L., Healey, J.R., Willett, V.B., et al., 2005a. Dissolved organic nitrogen uptake by plants—an important N uptake pathway Soil Biol. Biochem., 37(3):413-423.

[18]Jones, D.L., Shannon, D., Junvee-Fortune, T., et al., 2005b. Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol. Biochem., 37(1):179-181.

[19]Jones, D.L., Clode, P.L., Kilburn, M.R., et al., 2013. Competition between plant and bacterial cells at the microscale regulates the dynamics of nitrogen acquisition in wheat (Triticum aestivum). New Phytol., 200(3):796-807.

[20]Kempinski, C.F., Haffar, R., Barth, C., 2011. Toward the mechanism of NH4+ sensitivity mediated by Arabidopsis GDP-mannose pyrophosphorylase. Plant Cell Environ., 34(5):847-858.

[21]Li, B.H., Shi, W.M., Su, Y.H., 2011a. The differing responses of two Arabidopsis ecotypes to ammonium are modulated by the photoperiod regime. Acta Physiol. Plant., 33(2):325-334.

[22]Li, B.H., Li, Q., Su, Y.H., et al., 2011b. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis. Plant Cell Environ., 34(6):933-946.

[23]Li, Q., Li, B.H., Kronzucker, H.J., et al., 2010. Root growth inhibition by NH4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPase activity. Plant Cell Environ., 33(9):1529-1542.

[24]Liu, X.J., Zhang, Y., Han, W.X., et al., 2013. Enhanced nitrogen deposition over China. Nature, 494:459-462.

[25]Månsson, K.F., Olsson, M.O., Falkengren-Grerup, U., et al., 2014. Soil moisture variations affect short-term plant-microbial competition for ammonium, glycine, and glutamate. Ecol. Evol., 4(7):1061-1072.

[26]Näsholm, T., Huss-Danell, K., Högberg, P., 2001. Uptake of glycine by field grown wheat. New Phytol., 150(1):59-63.

[27]Näsholm, T., Kielland, K., Ganeteg, U., 2009. Uptake of organic nitrogen by plants. New Phytol., 182(1):31-48.

[28]Persson, J., Näsholm, T., 2001. Amino acid uptake: a widespread ability among boreal forest plants. Ecol. Lett., 4(5):434-438.

[29]Persson, J., Näsholm, T., 2003. Regulation of amino acid uptake by carbon and nitrogen in Pinus sylvestris. Planta, 217(2):309-315.

[30]Qin, C., Qian, W., Wang, W., et al., 2008. GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana. PNAS, 105(47):18308-18313.

[31]Qualls, R.G., Richardson, C.J., 2003. Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry, 62(2):197-229.

[32]Raab, T.K., Lipson, D.A., Monson, R.K., 1999. Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology, 80(7):2408-2419.


[34]Roosta, H.R., Schjoerring, J.K., 2008. Root carbon enrichment alleviates ammonium toxicity in cucumber plants. J. Plant Nutr., 31(5):941-958.

[35]Rothstein, D.E., 2009. Soil amino-acid availability across a temperate-forest fertility gradient. Biogeochemistry, 92(3):201-215.

[36]Rothstein, D.E., 2010. Effects of amino-acid chemistry and soil properties on the behavior of free amino acids in acidic forest soils. Soil Biol. Biochem., 42(10):1743-1750.

[37]Sauheitl, L., Glaser, B., Weigelt, A., 2009. Uptake of intact amino acids by plants depends on soil amino acid concentrations. Environ. Exp. Bot., 66(2):145-152.

[38]Schulten, H.R., Schnitzer, M., 1997. The chemistry of soil organic nitrogen: a review. Biol. Fert. Soils, 26(1):1-15.

[39]Stevenson, F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions, 2nd Ed. Wiley, New York, USA, p.87-115.

[40]van Cleve, K., Dyrness, C.T., Marion, G.M., et al., 1993. Control of soil development on the Tanana River floodplain, interior Alaska. Can. J. Forest Res., 23(5):941-955.

[41]Vinall, K., Schmidt, S., Brackin, R., et al., 2012. Amino acids are a nitrogen source for sugarcane. Funct. Plant Biol., 39(6):503-511.

[42]Wang, X.L., Ye, J., Perez, P.G., et al., 2013. The impact of organic farming on the soluble organic nitrogen pool in horticultural soil under open field and greenhouse conditions: a case study. Soil Sci. Plant Nutr., 59(2):237-248.

[43]Wang, X.L., Tang, D.M., Huang, D.F., 2014. Proteomic analysis of pakchoi leaves and roots under glycine-nitrogen conditions. Plant Physiol. Biochem., 75:96-104.

[44]Warren, C.R., 2006. Potential organic and inorganic N uptake by six Eucalyptus species. Funct. Plant Biol., 33(7):653-660.

[45]Warren, C.R., Adams, M.A., 2002. Possible causes of slow growth of nitrate-supplied Pinus pinaster. Can. J. Forest Res., 32(4):569-580.

[46]Warren, C.R., Adams, P.R., 2007. Uptake of nitrate, ammonium and glycine by plants of Tasmanian wet eucalypt forests. Tree Physiol., 27(3):413-419.

[47]Yu, Z., Zhang, Q., Kraus, T.E.C., et al., 2002. Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry, 61(2):173-198.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276/87952783; E-mail: jzus@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE