Full Text:   <1998>

Summary:  <1761>

CLC number: S158.3

On-line Access: 2020-06-01

Received: 2019-08-28

Revision Accepted: 2020-01-03

Crosschecked: 2020-05-25

Cited: 0

Clicked: 3930

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2020 Vol.21 No.6 P.474-484

http://doi.org/10.1631/jzus.B1900516


Effects of supplying silicon nutrient on utilization rate of nitrogen and phosphorus nutrients by rice and its soil ecological mechanism in a hybrid rice double-cropping system


Author(s):  Min Liao, Zhi-Ping Fang, Yu-Qi Liang, Xiao-Hui Huang, Xu Yang, Shu-Sen Chen, Xiao-Mei Xie, Chang-Xu Xu, Jia-Wen Guo

Affiliation(s):  College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   liaomin@zju.edu.cn, xiexiaomei@zju.edu.cn

Key Words:  Silicon nutrient, Utilization rate of fertilizer, Ecological mechanism, Rice double-cropping system


Min Liao, Zhi-Ping Fang, Yu-Qi Liang, Xiao-Hui Huang, Xu Yang, Shu-Sen Chen, Xiao-Mei Xie, Chang-Xu Xu, Jia-Wen Guo. Effects of supplying silicon nutrient on utilization rate of nitrogen and phosphorus nutrients by rice and its soil ecological mechanism in a hybrid rice double-cropping system[J]. Journal of Zhejiang University Science B, 2020, 21(6): 474-484.

@article{title="Effects of supplying silicon nutrient on utilization rate of nitrogen and phosphorus nutrients by rice and its soil ecological mechanism in a hybrid rice double-cropping system",
author="Min Liao, Zhi-Ping Fang, Yu-Qi Liang, Xiao-Hui Huang, Xu Yang, Shu-Sen Chen, Xiao-Mei Xie, Chang-Xu Xu, Jia-Wen Guo",
journal="Journal of Zhejiang University Science B",
volume="21",
number="6",
pages="474-484",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1900516"
}

%0 Journal Article
%T Effects of supplying silicon nutrient on utilization rate of nitrogen and phosphorus nutrients by rice and its soil ecological mechanism in a hybrid rice double-cropping system
%A Min Liao
%A Zhi-Ping Fang
%A Yu-Qi Liang
%A Xiao-Hui Huang
%A Xu Yang
%A Shu-Sen Chen
%A Xiao-Mei Xie
%A Chang-Xu Xu
%A Jia-Wen Guo
%J Journal of Zhejiang University SCIENCE B
%V 21
%N 6
%P 474-484
%@ 1673-1581
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1900516

TY - JOUR
T1 - Effects of supplying silicon nutrient on utilization rate of nitrogen and phosphorus nutrients by rice and its soil ecological mechanism in a hybrid rice double-cropping system
A1 - Min Liao
A1 - Zhi-Ping Fang
A1 - Yu-Qi Liang
A1 - Xiao-Hui Huang
A1 - Xu Yang
A1 - Shu-Sen Chen
A1 - Xiao-Mei Xie
A1 - Chang-Xu Xu
A1 - Jia-Wen Guo
J0 - Journal of Zhejiang University Science B
VL - 21
IS - 6
SP - 474
EP - 484
%@ 1673-1581
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1900516


Abstract: 
This study was conducted to reveal the effects of silicon (Si) application on nutrient utilization efficiency by rice and on soil nutrient availability and soil microorganisms in a hybrid rice double-cropping planting system. A series of field experiments were conducted during 2017 and 2018. The results showed that Si nutrient supply improved grain yield and the utilization rates of nitrogen (N) and phosphorus (P) to an appropriate level for both early and late plantings, reaching a maximum at 23.4 kg/ha Si. The same trends were found for the ratios of available N (AN) to total N (TN) and available P (AP) to total P (TP), the soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial biomass phosphorus (MBP), and the ratios of MBN to TN and MBP to TP, at different levels of Si. Statistical analysis further revealed that Si application enhanced rice growth and increased the utilization rate of fertilizer due to an ecological mechanism, i.e., Si supply significantly increased the total amount of soil microorganisms in paddy soil compared to the control. This promoted the mineralization of soil nutrients and improved the availability and reserves of easily mineralized organic nutrients.

硅养分补充对双季杂交稻系统水稻氮磷养分利用率的影响及其土壤生态机制

目的:揭示双季杂交稻系统中硅(Si)养分补充对水稻养分利用率与对土壤养分有效性影响的相应关系及其生态机制.
创新点:发现一定量的Si养分补充可提高稻田土壤氮(N)和磷(P)养分的有效性,并促进水稻根系对养分的吸收,从而提高水稻产量及肥料利用率.其核心生态机制是补充Si养分可显著增加稻田土壤的微生物总量,从而促进土壤养分同化固定,提高土壤中N和P的矿化以及易矿化的土壤微生物量氮(MBN)和土壤微生物量磷(MBP)的储备.
方法:2017和2018连续两年,在双季稻作区设计了系列田间试验,统一常规养分管理,于早稻和晚稻种植期间设置五个有效Si用量梯度处理(即 0(对照)、7.8、15.6、23.4和31.2 kg/ha Si),分析收获后的水稻生长性状(株高、籽粒产量、植株生物量等),水稻根、茎、叶和籽粒中N和P的含量,土壤有效态N和P的含量以及土壤微生物量碳(MBC)、MBN和MBP的含量,最后统计分析Si的供应与对水稻N和P养分利用率、土壤养分有效性、MBC、MBN和MBP的影响及其相互关系.
结论:Si养分补充可增加双季杂交稻系统土壤微生物总量,促进土壤养分同化固定,提高土壤养分的有效性以及易矿化的有机养分的储备,使得土壤养分易于被水稻根系吸收利用,从而提高水稻肥料利用率,促进水稻的生长发育,提高水稻产量.其中Si施用量为23.4 kg/ha时双季水稻产量及N和P肥利用率均达到最大值,此时土壤有效态氮与总氮比(AN/TN)、有效态磷与总磷比(AP/TP)以及MBN和MBP也均达到最大值.上述结果表明,通过Si养分补充可适当削减双季杂交稻系统因过多化学肥料投入带来的面源污染问题.

关键词:硅养分;肥料利用率;生态机制;双季稻系统

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bao SD, 2011. Soil Agrochemical Analysis. China Agriculture Press, Beijing, China, p.39-61, 264-268 (in Chinese).

[2]Canakci H, Sidik W, Kilic IH, 2015. Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils Found, 55(5):1211-1221.

[3]Cao HS, Zhou L, Su Y, et al., 2016. Non-specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice. Plant J, 86(4):308-321.

[4]Debona D, Rodrigues FA, Datnoff LE, 2017. Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol, 55:85-107.

[5]Eisenhauer N, Scheu S, Jousset A, 2012. Bacterial diversity stabilizes community productivity. PLoS ONE, 7(3):e34517.

[6]Eneji AE, Inanaga S, Muranaka S, et al., 2008. Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J Plant Nutr, 31(2):355-365.

[7]Fan XY, Lin WP, Liu R, et al., 2018. Physiological response and phenolic metabolism in tomato (Solanum lycopersicum) mediated by silicon under Ralstonia solanacearum infection. J Integr Agric, 17(10):2160-2171.

[8]Huang GY, Guo GG, Yao SY, 2016. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) under Cu stress. Int J Phytoremediat, 18(1):33-40.

[9]Huang XF, Chaparro JM, Reardon KF, et al., 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 92(4):267-275.

[10]Kalantary F, Kahani M, 2015. Evaluation of the ability to control biological precipitation to improve sandy soils. Procedia Earth Planet Sci, 15:278-284.

[11]Karunakaran G, Suriyaprabha R, Manivasakan P, et al., 2013. Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol, 7(3):70-77.

[12]Khaleghi M, Rowshanzamir MA, 2019. Biologic improvement of a sandy soil using single and mixed cultures: a comparison study. Soil Till Res, 186:112-119.

[13]Kostic L, Nikolic N, Samardzic J, et al., 2015. Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat. Biol Fertil Soils, 51(3):289-298.

[14]Kostic L, Nikolic N, Bosnic D, et al., 2017. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil, 419(1-2):447-455.

[15]Ma JF, Yamaji N, 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci, 11(8):392-397.

[16]Ma JF, Yamaji N, 2008. Functions and transport of silicon in plants. Cell Mol Life Sci, 65(19):3049-3057.

[17]Ma JF, Yamaji N, 2015. A cooperative system of silicon transport in plants. Trends Plant Sci, 20(7):435-442.

[18]Mehrabanjoubani P, Abdolzadeh A, Sadeghipour HR, et al., 2015. Impacts of silicon nutrition on growth and nutrient status of rice plants grown under varying zinc regimes. Theor Exp Plant Physiol, 27:19-29.

[19]Neu S, Schaller J, Dudel EG, 2017. Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci Rep, 7:40829.

[20]Pati S, Pal B, Badole S, et al., 2016. Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Commun Soil Sci Plan Anal, 47(3):284-290.

[21]Pavlovic J, Samardzic J, Maksimovic V, et al., 2013. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytol, 198(4):1096-1107.

[22]Qi YB, Chen T, Pu J, et al., 2018. Response of soil physical, chemical and microbial biomass properties to land use changes in fixed desertified land. CATENA, 160:339-344.

[23]Raza W, Wang JC, Wu YC, 2016. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. Appl Microbiol Biotechnol, 100(17):7639-7650.

[24]Reithmaier GMS, Knorr KH, Arnhold S, et al., 2017. Enhanced silicon availability leads to increased methane production, nutrient and toxicant mobility in peatlands. Sci Rep, 7:8728.

[25]Ryan PR, James RA, Weligama C, et al., 2014. Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat. Physiol Plant, 151(3):230-242.

[26]Saudy HS, Mubarak M, 2015. Mitigating the detrimental impacts of nitrogen deficit and fenoxaprop-p-ethyl herbicide on wheat using silicon. Commun Soil Sci Plan, 46(7):897-907.

[27]Schaller J, Brackhage C, Gessner MO, et al., 2012. Silicon supply modifies C:N:P stoichiometry and growth of Phragmites australis. Plant Biol, 14(2):392-396.

[28]Schaller J, Schoelynck J, Struyf E, et al., 2016. Silicon affects nutrient content and ratios of wetland plants. Silicon, 8(4):479-485.

[29]Schaller J, Faucherre S, Joss H, et al., 2019. Silicon increases the phosphorus availability of Arctic soils. Sci Rep, 9:449.

[30]Sinha S, Masto RE, Ram LC, et al., 2009. Rhizosphere soil microbial index of tree species in a coal mining ecosystem. Soil Biol Biochem, 41(9):1824-1832.

[31]Toyama T, Furukawa T, Maeda N, et al., 2011. Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria–root exudate interactions. Water Res, 45(4):1629-1638.

[32]van Bockhaven J, de Vleesschauwer D, Höfte M, 2013. Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot, 64(5):1281-1293.

[33]Vance ED, Brookes PC, Jenkinson DS, 1987. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem, 19(6):703-707.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE