Full Text:   <1145>

CLC number: R962

On-line Access: 2013-11-04

Received: 2013-05-13

Revision Accepted: 2013-09-06

Crosschecked: 2013-10-15

Cited: 12

Clicked: 2714

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2013 Vol.14 No.11 P.1004-1012


Neuroprotective effects of flavonoids extracted from licorice on kainate-induced seizure in mice through their antioxidant properties

Author(s):  Ling-hui Zeng, Hua-dan Zhang, Cai-ju Xu, Yu-jia Bian, Xue-jiao Xu, Qiang-min Xie, Rong-hua Zhang

Affiliation(s):  Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China; more

Corresponding email(s):   rhzhang@cdc.zj.cn

Key Words:  Seizure, Kainate, Flavonoid, Licorice, Antioxidant, Malondialdehyde (MDA), Superoxide dismutase (SOD)

Ling-hui Zeng, Hua-dan Zhang, Cai-ju Xu, Yu-jia Bian, Xue-jiao Xu, Qiang-min Xie, Rong-hua Zhang. Neuroprotective effects of flavonoids extracted from licorice on kainate-induced seizure in mice through their antioxidant properties[J]. Journal of Zhejiang University Science B, 2013, 14(11): 1004-1012.

@article{title="Neuroprotective effects of flavonoids extracted from licorice on kainate-induced seizure in mice through their antioxidant properties",
author="Ling-hui Zeng, Hua-dan Zhang, Cai-ju Xu, Yu-jia Bian, Xue-jiao Xu, Qiang-min Xie, Rong-hua Zhang",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Neuroprotective effects of flavonoids extracted from licorice on kainate-induced seizure in mice through their antioxidant properties
%A Ling-hui Zeng
%A Hua-dan Zhang
%A Cai-ju Xu
%A Yu-jia Bian
%A Xue-jiao Xu
%A Qiang-min Xie
%A Rong-hua Zhang
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 11
%P 1004-1012
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300138

T1 - Neuroprotective effects of flavonoids extracted from licorice on kainate-induced seizure in mice through their antioxidant properties
A1 - Ling-hui Zeng
A1 - Hua-dan Zhang
A1 - Cai-ju Xu
A1 - Yu-jia Bian
A1 - Xue-jiao Xu
A1 - Qiang-min Xie
A1 - Rong-hua Zhang
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 11
SP - 1004
EP - 1012
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300138

A relationship between status epilepticus (SE) and oxidative stress has recently begun to be recognized. To explore whether the flavonoids extracted from licorice (LFs) have any protective effect on kainate (KA)-induced seizure in mice, we treated mice with LFs before and after KA injection. In KA-treated mice, we found that superoxide dismutase (SOD) activity decreased immediately after the onset of seizure at 1 h and then increased at 6 h. It returned to baseline 1 d after seizure and then increased again at 3, 7, and 28 d, while malondialdehyde (MDA) content remained at a high level at 1 h, 6 h, 3 d, 7 d, and 28 d, indicating a more oxidized status related to the presence of more reactive oxygen species (ROS). Treatment with LFs before KA injection reversed the seizure-induced change in SOD activity and MDA content at 1 h, 6 h, 3 d, 7 d, and 28 d. Treatment with LFs after seizure decreased KA-induced SOD activity and MDA content at 7 and 28 d. Also, LF pre- and post-KA treatments decreased seizure-induced neuronal cell death. Subsequently, Morris water maze tests revealed that the escape latency was significantly decreased and the number of target quadrant crossings was markedly increased in the LF-treated groups. Thus, our data indicate that LFs have protective effects on seizure-induced neuronal cell death and cognitive impairment through their anti-oxidative effects.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abbasi, E., Nassiri-Asl, M., Shafeei, M., Sheikhi, M., 2012. Neuroprotective effects of vitexin, a flavonoid, on pentylenetetrazole-induced seizure in rats. Chem. Biol. Drug Des., 80(2):274-278.

[2]Aguiar, C.C., Almeida, A.B., Araújo, P.V., de Abreu, R.N., Chaves, E.M., do Vale, O.C., Macêdo, D.S., Woods, D.J., Fonteles, M.M., Vasconcelos, S.M., 2012. Oxidative stress and epilepsy: literature review. Oxid. Med. Cell. Longev., 2012:795259.

[3]Asha, M.K., Debraj, D., Prashanth, D., Edwin, J.R., Srikanth, H.S., Muruganantham, N., Dethe, S.M., Anirban, B., Jaya, B., Deepak, M., et al., 2013. In vitro anti-Helicobacter pylori activity of a flavonoid rich extract of Glycyrrhiza glabra and its probable mechanisms of action. J. Ethnopharmacol., 145(2):581-586.

[4]Ashrafi, M.R., Shams, S., Nouri, M., Mohseni, M., Shabanian, R., Yekaninejad, M.S., Chegini, N., Khodadad, A., Safaralizadeh, R., 2007. A probable causative factor for an old problem: selenium and glutathione peroxidase appear to play important roles in epilepsy pathogenesis. Epilepsia, 48(9):1750-1755.

[5]Bellissimo, M.I., Amado, D., Abdalla, D.S., Ferreira, E.C., Cavalheiro, E.A., Naffah-Mazzacoratti, M.G., 2001. Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epilepsy Res., 46(2):121-128.

[6]Ben-Ari, Y., Cossart, R., 2000. Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci., 23(11):580-587.

[7]Ben-Menachem, E., Kyllerman, M., Marklund, S., 2000. Superoxide dismutase and glutathione peroxidase function in progressive myoclonus epilepsies. Epilepsy Res., 40(1):33-39.

[8]Bruce, A.J., Baudry, M., 1995. Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic. Biol. Med., 18(6):993-1002.

[9]Chen, L.L., Feng, H.F., Mao, X.X., Ye, Q., Zeng, L.H., 2013. One hour of pilocarpine-induced status epilepticus is sufficient to develop chronic epilepsy in mice, and is associated with mossy fiber sprouting but not neuronal death. Neurosci. Bull., 29(3):295-302.

[10]Elger, C.E., Schmidt, D., 2008. Modern management of epilepsy: a practical approach. Epilepsy Behav., 12(4):501-539.

[11]Floyd, R., Carney, J., 1992. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol., 32(S1):S22-S27.

[12]Frantseva, M.V., Perez Velazquez, J.L., Tsoraklidis, G., Mendonca, A.J., Adamchik, Y., Mills, L.R., Carlen, P.L., Burnham, M.W., 2000. Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience, 97(3):431-435.

[13]Freitas, R.M., 2009. Investigation of oxidative stress involvement in hippocampus in epilepsy model induced by pilocarpine. Neurosci. Lett., 462(3):225-229.

[14]Freitas, R.M., Vasconcelos, S.M., Souza, F.C., Viana, G.S., Fonteles, M.M., 2005. Oxidative stress in the hippocampus after pilocarpine induced status epilepticus in Wistar rats. FEBS J., 272(6):1307-1312.

[15]Golechha, M., Chaudhry, U., Bhatia, J., Saluja, D., Arya, D.S., 2011. Naringin protects against kainic acid-induced status epilepticus in rats: evidence for an antioxidant, anti-inflammatory and neuroprotective intervention. Biol. Pharm. Bull., 34(3):360-365.

[16]Jäger, A.K., Saaby, L., 2011. Flavonoids and the CNS. Molecules, 16(12):1471-1485.

[17]Kovac, S., Domijan, A.M., Walker, M.C., Abramov, A.Y., 2012. Prolonged seizure activity impairs mitochondrial bioenergetics and induces cell death. J. Cell. Sci., 125(7):1796-1806.

[18]Lehtinen, M.K., Tegelberg, S., Schipper, H., Su, H., Zukor, H., Manninen, O., Kopra, O., Joensuu, T., Hakala, P., Bonni, A., et al., 2009. Cystatin B deficiency sensitizes neurons to oxidative stress in progressive myoclonus epilepsy, EPM1. J. Neurosci., 29(18):5910-5915.

[19]Liu, Y.F., Gao, F., Li, X.W., Jia, R.H., Meng, X.D., Zhao, R., Jing, Y.Y., Wang, Y., Jiang, W., 2012. The anticonvulsant and neuroprotective effects of baicalin on pilocarpine-induced epileptic model in rats. Neurochem. Res., 37(8):1670-1680.

[20]Löscher, W., Schmidt, D., 2006. New horizons in the development of antiepileptic drugs: innovative strategies. Epilepsy Res., 69(3):183-272.

[21]Martinc, B., Grabnar, I., Vovk, T., 2012. The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr. Neuropharmacol., 10(4):328-343.

[22]Nazıroğlu, M., Akay, M.B., Çelik, Ö., Yıldırım, M.İ., Balcı, E., Yürekli, V.A., 2013. Capparis ovata modulates brain oxidative toxicity and epileptic seizures in pentylentetrazol-induced epileptic rats. Neurochem. Res., 38(4):780-788.

[23]Royle, S.J., Collins, F.C., Rupniak, H.T., Barnes, J.C., Anderson, R., 1999. Behavioural analysis and susceptibility to CNS injury of four inbred strains of mice. Brain Res., 816(2):337-349.

[24]Ryan, K., Backos, D.S., Reigan, P., Patel, M., 2012. Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J. Neurosci., 32(33):11250-11258.

[25]Shiihara, T., Kato, M., Ichiyama, T., Takahashi, Y., Tanuma, N., Miyata, R., Hayasaka, K., 2006. Acute encephalopathy with refractory status epilepticus: bilateral mesial temporal and claustral, associated with a peripheral marker of oxidative DNA damage. J. Neurol. Sci., 250(1):159-161.

[26]Shin, E.J., Ko, K.H., Kim, W.K., Chae, J.S., Yen, T.P., Kim, H.J., Wie, M.B., Kim, H.C., 2008. Role of glutathione peroxidase in the ontogeny of hippocampal oxidative stress and kainate seizure sensitivity in the genetically epilepsy-prone rats. Neurochem. Int., 52(6):1134-1147.

[27]Shin, E.J., Jeong, J.H., Chung, Y.H., Kim, W.K., Ko, K.H., Bach, J.H., Hong, J.S., Yoneda, Y., Kim, H.C., 2011. Role of oxidative stress in epileptic seizures. Neurochem. Int., 59(2):122-137.

[28]Sun, Y.X., Tang, Y., Wu, A.L., Liu, T., Dai, X.L., Zheng, Q.S., Wang, Z.B., 2010. Neuroprotective effect of liquiritin against focal cerebral ischemia/reperfusion in mice via its antioxidant and antiapoptosis properties. J. Asian Nat. Prod. Res., 12(12):1051-1060.

[29]Tejada, S., Sureda, A., Roca, C., Gamundí, A., Esteban, S., 2007. Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Res. Bull., 71(4):372-375.

[30]Temkin, N.R., 2001. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia, 42(4):515-524.

[31]Wang, K.L., Hsia, S.M., Chan, C.J., Chang, F.Y., Huang, C.Y., Bau, D.T., Wang, P.S., 2013. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin. Ther. Targets, 17(4):337-349.

[32]Xie, Y.C., Dong, X.W., Wu, X.M., Yan, X.F., Xie, Q.M., 2009. Inhibitory effects of flavonoids extracted from licorice on lipopolysaccharide-induced acute pulmonary inflammation in mice. Int. Immunopharmacol., 9(2):194-200.

[33]Zeng, L.H., Rensing, N.R., Wong, M., 2009. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J. Neurosci., 29(21):6964-6972.

[34]Zhan, C., Yang, J., 2006. Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol. Res., 53(3):303-309.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE