CLC number: S482.3+3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-01-06
Cited: 0
Clicked: 4558
Citations: Bibtex RefMan EndNote GB/T7714
Hong-cui Liu, Bing-qiang Yuan, Shao-nan Li. Developing antibodies from cholinesterase derived from prokaryotic expression and testing their feasibility for detecting immunogen content in Daphnia magna[J]. Journal of Zhejiang University Science B, 2016, 17(2): 110-126.
@article{title="Developing antibodies from cholinesterase derived from prokaryotic expression and testing their feasibility for detecting immunogen content in Daphnia magna",
author="Hong-cui Liu, Bing-qiang Yuan, Shao-nan Li",
journal="Journal of Zhejiang University Science B",
volume="17",
number="2",
pages="110-126",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500008"
}
%0 Journal Article
%T Developing antibodies from cholinesterase derived from prokaryotic expression and testing their feasibility for detecting immunogen content in Daphnia magna
%A Hong-cui Liu
%A Bing-qiang Yuan
%A Shao-nan Li
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 2
%P 110-126
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500008
TY - JOUR
T1 - Developing antibodies from cholinesterase derived from prokaryotic expression and testing their feasibility for detecting immunogen content in Daphnia magna
A1 - Hong-cui Liu
A1 - Bing-qiang Yuan
A1 - Shao-nan Li
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 2
SP - 110
EP - 126
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500008
Abstract: To yield cholinesterase (ChE) from prokaryotic expression, the ChE gene that belongs to Daphnia magna was amplified by reverse transcription-polymerase chain reaction (RT-PCR) using forward primer 5'-CCCYGGNGCSAT GATGTG-3' and reverse primer 5'-GYAAGTTRGCCCAATATCT-3'. To express the gene, one sequence of the amplified DNA, which was able to encode a putative protein containing two conserved carboxylesterase domains, was connected to the prokaryotic expression vector PET-29a(+). The recombinant vector was transformed into Escherichia coil BL21 (DE3). Protein expression was induced by isopropy-
[1]Abdel-Halim, K.Y., Salama, A.K., El-khateeb, E.N., et al., 2006. Organophosphorus pollutants (OPP) in aquatic environment at Damietta Governorate, Egypt: implications for monitoring and biomarker responses. Chemosphere, 63(9):1491-1498.
[2]Anthony, N., Rocheleau, T., Mocelin, G., et al., 1995. Cloning, sequencing and functional expression of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti. FEBS Lett., 368(3):461-465.
[3]Barata, C., Baird, D.J., Soares, A.M.V.M., et al., 2001. Biochemical factors contributing to response variation among resistant and sensitive clones of Daphnia magna Straus exposed to ethyl parathion. Ecotoxicol. Environ. Saf., 49(2):155-163.
[4]Baslow, M.H., Nigrelli, R.F., 1964. The effects of thermal acclimation on brain cholinesterase of the killifish, Fundulus heteroclitus. Zoologica, 49:41-51.
[5]Botté, E.S., Smith-Keune, C., Jerry, D.R., 2013. Temperature: a prolonged confounding factor on cholinesterase activity in the tropical reef fish Acanthochromis polyacanthus. Aquat. Toxicol., 140-141:337-339.
[6]Bradford, M.M., 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein dye binding. Anal. Siochem., 72(1-2):248-254.
[7]Cajaraville, M.P., Bebianno, M.J., Blasco, J., et al., 2000. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci. Total Environ., 247(2-3):295-311.
[8]Carvalho, F.D., Machado, I., Martinez, M.S., et al., 2003. Use of atropine-treated Daphnia magna survival for detection of environmental contamination by acetylcholinesterase inhibitors. Ecotoxicol. Environ. Saf., 54(1):43-46.
[9]Chen, L., Li, B., Pu, G.Q., 2010. Cloning and sequence analysis of cDNA fragment of acetylcholinesterase gene in Spodoptera litura. Sci. Sericult., 36(1):0138-0142.
[10]Coelho, S., Oliveira, R., Pereira, S., et al., 2011. Assessing lethal and sub-lethal effects of trichlorfon on different trophic levels. Aquat. Toxicol., 103(3-4):191-198.
[11]Damásio, J., Guilhermino, L., Soares, A.M.V.M., et al., 2007. Biochemical mechanisms of resistance in Daphnia magna exposed to the insecticide fenitrothion. Chemosphere, 70(1):74-82.
[12]den Besten, P.J., Valk, S., van Weerlee, E., et al., 2001. Bioaccumulation and biomarkers in the sea star Asterias rubens (Echinodermata: Asteroidea): a North Sea field study. Mar. Environ. Res., 51(4):365-387.
[13]Denoyelle, R., Rault, M., Mazzia, C., et al., 2007. Cholinesterase activity as a biomarker of pesticide exposure in Allolobophora chlorotica earthworms living in apple orchards under different management strategies. Environ. Toxicol. Chem., 26(12):2644-2649.
[14]Diamantino, T.C., Almeida, E., Soares, A.M.V.M., et al., 2003. Characterization of cholinesterases from Daphnia magna Straus and their inhibition by zinc. Bull. Environ. Contam. Toxicol., 71(2):219-225.
[15]Duquesne, S., 2006. Effects of an organophosphate on Daphnia magna, at subspeciesal and speciesal levels: implications for population dynamics. Ecotoxicol. Environ. Saf., 65(2):145-150.
[16]Duquesne, S., Küster, E., 2010. Biochemical, metabolic, and behavioural responses and recovery of Daphnia magna after exposure to an organophosphate. Ecotoxicol. Environ. Saf., 73(3):353-359.
[17]Elendt, B.P., Bias, W.R., 1990. Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing: effects of the optimization of culture conditions on life history parameters of Daphnia magna. Water Res., 24(9):1157-1167.
[18]Gälli, R., Rich, H.W., Scholtz, R., 1994. Toxicity of organophosphate insecticides and their metabolites to the water flea Daphnia magna, the Microtox test and an acetylcholinesterase inhibition test. Aquat. Toxicol., 30(3):259-269.
[19]Garabrant, D.H., Aylward, L.L., Berent, S., et al., 2009. Cholinesterase inhibition in chlorpyrifos workers: characterization of biomarkers of exposure and response in relation to urinary TCPy. J. Expo. Sci. Environ. Epidemiol., 19(7):634-642.
[20]Guilhermino, L., Lopes, M.C., Carvalho, A.P., et al., 1996. Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna. Chemosphere, 32(4):727-738.
[21]Hackenberger, B.K., Jarić-Perkušić, D., Stepić, S., 2008. Effect of temephos on cholinesterase activity in the earthworm Eisenia fetida (Oligochaeta, Lumbricidae). Ecotoxicol. Environ. Saf., 71(2):583-589.
[22]Hall, L.M.C., Malcolm, C.A., 1991. The acetylcholinesterase gene of Anopheles stephensi. Cell. Mol. Neurobiol., 11(1):131-141.
[23]Hill, E.F., 1989. Sex and storage affect cholinesterase activity in blood plasma of Japanese quail. J. Wildl. Dis., 25(4):580-585.
[24]Hogan, J.W., 1970. Water temperature as a source of variation in specific activity of brain acetylcholinesterase of bluegills. Bull. Environ. Contam. Toxicol., 5(4):347-353.
[25]Jemec, A., Drobne, D., Tisler, T., et al., 2007. The applicability of acetylcholinesterase and glutathione S-transferase in Daphnia magna toxicity test. Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 144(4):303-309.
[26]Jiang, H.B., Liu, S.W., Zhao, P.C., et al., 2009. Recombinant expression and biochemical characterization of the catalytic domain of acetylcholinesterase-1 from the African malaria mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol., 39(9):646-653.
[27]Kaufer, D., Friedman, A., Seidman, S., et al., 1999. Anticholinesterases induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission. Chem. Biol. Interact., 119-120:349-360.
[28]Key, P.B., Fulton, M.H., 2002. Characterization of cholinesterase activity in tissues of the grass shrimp (Palaemonetes pugio). Pestic. Biochem. Physiol., 72(3):186-192.
[29]Khattab, A.D., Ali, L.S., 2007. Immunoassays for avian butyrylcholinesterase: implications for ecotoxicological testing and clinical biomonitoring. Environ. Toxicol. Pharmacol., 24(3):275-285.
[30]Khattab, A.D., Walker, C.H., Johnston, G., et al., 1994. An ELISA assay for avian serum butyrylcholinesterase: a biomarker for organophosphates. Environ. Toxicol. Chem., 13(10):1661-1667.
[31]Kondo, M., Hada, T., Fukui, K., et al., 1995. Enzyme-linked immunosorbent assay (ELISA) for Aleuria aurantia lectin-reactive serum cholinesterase to differentiate liver cirrhosis and chronic hepatitis. Clin. Chim. Acta, 243(1):1-9.
[32]Li, C.X., Dong, Y.D., Liu, M.D., et al., 2007. Alternative splicing of ace1 gene in Culex pipiens pallens and its effect to enzyme activity. Acta Parasitol. Med. Entomol. Sin., 14(3):153-157 (in Chinese).
[33]Li, F., Han, Z.J., 2002. Cloning and sequencing of two acetylcholinesterase cDNA fragments from cotton aphid, Aphis gossypii Glover. Zool. Res., 23(5):444-448 (in Chinese).
[34]Li, S.N., Tan, Y.J., 2011. Hormetic response of cholinesterase from Daphnia magna in chronic exposure to triazophos and chlorpyrifos. J. Environ. Sci., 23(5):852-859.
[35]Li, S.N., Xie, X.C., Tan, Y.J., et al., 2005. Induction of triazophos to brain acetylcholinesterase from topmouth gudgeon, Pseudorasbora parva. Chin. J. Pest. Sci., 7(1):59-62 (in Chinese).
[36]Lin, T., Li, L.N., Chang, R.L., et al., 2007. Cloning and sequence analysis of acetylcholinease gene of Pseudophacopteron canarium. J. Jilin Agric. Univ., 29(4):368-370 (in Chinese).
[37]Liu, H.C., Yuan, B.Q., Li, S.N., 2012a. Altered quantities and in vivo activities of cholinesterase from Daphnia magna in sub-lethal exposure to organophosphorus insecticides. Ecotoxicol. Environ. Saf., 80:118-125.
[38]Liu, H.C., Yang, Y.X., Li, S.N., 2012b. Quantitative analysis of cholinesterase from Daphnia magna by indirect and non-competitive enzyme-linked immunosorbent assay. J. Zhejiang Univ. (Agric. Life Sci.), 38(3):347-354 (in Chinese).
[39]Monserrat, J.M., Bianchini, A., 1998. Some kinetic and toxicological characteristics of thoracic ganglia cholinesterase of Chasmagnathus granulate (Decapoda, Grapsidae). Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 120(2):193-199.
[40]Ni, X.Y., Tomita, T., Kasai, S., et al., 2003. cDNA and deduced protein sequence of acetylcholinesterase from the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Appl. Entomol. Zool., 38(1):49-56.
[41]Phillips, T.A., Summerfelt, R.C., Atchison, G.J., 2002. Environmental, biological, and methodological factors affecting cholinesterase activity in walleye (Stizostedion vitreum). Arch. Environ. Contam. Toxicol., 43(1):75-80.
[42]Printes, L.B., Fellowes, M.D.E., Callaghan, A., 2008. Clonal variation in acetylcholinesterase biomarkers and life history traits following OP exposure in Daphnia magna. Ecotoxicol. Environ. Saf., 71(2):519-526.
[43]Printes, L.B., Fernandes, M.N., Espíndola, E.L.G., 2011. Laboratory measurements of biomarkers and individual performances in Chironomus xanthus to evaluate pesticide contamination of sediments in a river of southeastern Brazil. Ecotoxicol. Environ. Saf., 74(3):424-430.
[44]Rattner, B.A., 1982. Diagnosis of anticholinesterase poinsoning in birds: effects of environmental temperature and underfeeding on cholinesterase activity. Environ. Toxicol. Chem., 1(4):329-335.
[45]Sáenz, L.A., Seibert, E.L., Zanette, J., et al., 2010. Biochemical biomarkers and metals in Perna perna mussels from mariculture zones of Santa Catarina, Brazil. Ecotoxicol. Environ. Saf., 73(5):796-804.
[46]Sanchez-Hernandez, J.C., Fossi, M.C., Leonzio, C., et al., 1998. Use of biochemical biomarkers as a screening tool to focus the chemical monitoring of organic pollutants in the Biobio river basin (Chile). Chemosphere, 37(4):699-710.
[47]Scaps, P., Borot, O., 2000. Acetylcholinesterase activity of the polychaete Nereis diversicolor: effects of temperature and salinity. Comp. Biochem. Physiol. C: Pharmacol. Toxicol. Endocrinol., 125(3):377-383.
[48]Stien, X., Percic, P., Gnassia-Barelli, M., et al., 1998. Evaluation of biomarkers in caged fishes and mussels to assess the quality of waters in a bay of the NW Mediterranean Sea. Environ. Pollut., 99(3):339-345.
[49]Sturm, A., Hansen, P.D., 1999. Altered cholinesterase and monooxygenase levels in Daphnia magna and Chironomus riparius exposed to environmental pollutants. Ecotoxicol. Environ. Saf., 42(1):9-15.
[50]Sturm, A., Wogram, J., Hansen, P.D., et al., 1999. Potential use of cholinesterase in monitoring low levels of organophosphates in small streams: natural variability in three-spined stickleback (Gasterosteus aculeatus) and relation to pollution. Environ. Toxicol. Chem., 18(2):194-200.
[51]van Oosterom, J., King, S.C., Negri, A., et al., 2010. Investigation of the mud crab (Scylla serrata) as a potential bio-monitoring species for tropical coastal marine environments of Australia. Mar. Pollut. Bull., 60(2):283-290.
[52]Vesela, S., Kuca, K., Jun, D., 2006. Toxicity of the nerve agent tabun to Daphnia magna, a new experimental species in military toxicology. Chem. Ecol., 22(2):175-180.
[53]Villatte, F., Bachmann, T.T., 2002. How many genes encode cholinesterase in arthropods Pestic. Biochem. Physiol., 73(2):122-129.
[54]Xuereb, B., Noury, P., Felten, V., et al., 2007. Cholinesterase activity in Gammarus pulex (Crustacea Amphipoda): characterization and effects of chlorpyrifos. Toxicology, 236(3):178-189.
[55]Xuereb, B., Chaumot, A., Mons, R., et al., 2009. Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda): intrinsic variability, reference levels, and a reliable tool for field surveys. Aquat. Toxicol., 93(4):225-233.
[56]Yang, L.G., Hu, S.C., Wei, P.H., et al., 1998. Enzyme Immunoassay. Nanjing University Press, Nanjing, p.279-281 (in Chinese).
[57]Yang, Y.X., 2010. Immunoassays for Daphnia magna cholinesterases: a biomarker for organophosphates. Master’s Thesis, Zhejiang University, Hangzhou, p.1-95 (in Chinese).
[58]Yang, Y.X., Niu, L.Z., Li, S.N., 2013. Purification and studies on characteristics of cholinesterases from Daphnia magna. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 14(4):325-335.
[59]Zhang, T., 2008. Expression of Drosophila melanogaster acetylcholinesterase (AchE) gene in Pichia pastoris. Master’s Thesis, Chongqing University, Chongqing, p.1-52 (in Chinese).
[60]Zhou, M.J., Zhang, C.L., Richard, P., et al., 2000. Choline oxidase: a useful tool for high-throughput assays of acetylcholinesterase, phospholipase D, phosphatidylcholine-specific phospholipase C, and sphingomyelinase. Proc. SPIE, 3926:166-171.
Open peer comments: Debate/Discuss/Question/Opinion
<1>