CLC number: Q819
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-03-15
Cited: 1
Clicked: 4398
Wei Hu, Ji-hong Chen, Shu-yang Wang, Jing Liu, Yuan Song, Qing-feng Wu, Wen-jian Li. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger[J]. Journal of Zhejiang University Science B, 2016, 17(4): 262-270.
@article{title="Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger",
author="Wei Hu, Ji-hong Chen, Shu-yang Wang, Jing Liu, Yuan Song, Qing-feng Wu, Wen-jian Li",
journal="Journal of Zhejiang University Science B",
volume="17",
number="4",
pages="262-270",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500120"
}
%0 Journal Article
%T Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger
%A Wei Hu
%A Ji-hong Chen
%A Shu-yang Wang
%A Jing Liu
%A Yuan Song
%A Qing-feng Wu
%A Wen-jian Li
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 4
%P 262-270
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500120
TY - JOUR
T1 - Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger
A1 - Wei Hu
A1 - Ji-hong Chen
A1 - Shu-yang Wang
A1 - Jing Liu
A1 - Yuan Song
A1 - Qing-feng Wu
A1 - Wen-jian Li
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 4
SP - 262
EP - 270
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500120
Abstract: The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus , and to analyze the relationship between changes in the physiological properties of A. induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.
[1]Angumeenal, A.R., Venkappayya, D., 2013. An overview of citric acid production. LWT-Food Sci. Technol., 50(2):367-370.
[2]Bai, D.M., Zhao, X.M., Li, X.G., et al., 2004. Strain improvement of Rhizopus oryzae for over-production of
[3]Betiku, E., Adesina, O.A., 2013. Statistical approach to the optimization of citric acid production using filamentous fungus Aspergillus niger grown on sweet potato starch hydrolyzate. Biomass Bioenerg., 55:350-354.
[4]Borgia, P.T., Iartchouk, N., Riggle, P.J., et al., 1996. The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. Fungal Genet. Biol., 20(3):193-203.
[5]Butler, M.J., Day, A.W., 1998. Fungal melanins: a review. Can. J. Microbiol., 44(12):1115-1136.
[6]de Nicolas-Santiago, S., Regalado-Gonzalez, C., Garcia-Almendarez, B., et al., 2006. Physiological, morphological, and mannanase production studies on Aspergillus niger uam-gs1 mutants. Electron. J. Biotechnol., 9(1):50-60.
[7]Dhillon, G.S., Brar, S.K., Verma, M., et al., 2011a. Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol., 4(4):505-529.
[8]Dhillon, G.S., Brar, S.K., Verma, M., et al., 2011b. Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem. Eng. J., 54(2):83-92.
[9]Fukuda, K., Yamada, K., Deoka, K., et al., 2009. Class III chitin synthase chsB of Aspergillus nidulans localizes at the sites of polarized cell wall synthesis and is required for conidial development. Eukaryot. Cell, 8(7):945-956.
[10]Goodhead, D.T., 1999. Mechanisms for the biological effectiveness of high-LET radiations. J. Radiat. Res., 40:S1-S13.
[11]Grewal, H.S., Kalra, K.L., 1995. Fungal production of citric acid. Biotechnol. Adv., 13(2):209-234.
[12]Grimm, L.H., Kelly, S., Krull, R., et al., 2005. Morphology and productivity of filamentous fungi. Appl. Microbiol. Biotechnol., 69(4):375-384.
[13]Haq, I.U., Ali, S., Iqbal, J., 2003. Direct production of citric acid from raw starch by Aspergillus niger. Process Biochem., 38(6):921-924.
[14]Heerd, D., Tari, C., Fernandez-Lahore, M., 2014. Microbial strain improvement for enhanced polygalacturonase production by Aspergillus sojae. Appl. Microbiol. Biotechnol., 98(17):7471-7481.
[15]Hu, G.R., Fan, Y., Zhang, L., et al., 2013. Enhanced lipid productivity and photosynthesis efficiency in a Desmodesmus sp. mutant induced by heavy carbon ions. PLoS ONE, 8(4):e60700.
[16]Hu, W., Liu, J., Chen, J.H., et al., 2014a. A mutation of Aspergillus niger for hyper-production of citric acid from corn meal hydrolysate in a bioreactor. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(11):1006-1010.
[17]Hu, W., Chen, J.H., Li, W.J., et al., 2014b. Mutant breeding of Aspergillus niger irradiated by 12C6+ for hyper citric acid. Nucl. Sci. Tech., 25(2):020302.
[18]Ikram-Ul-Haq, Ali, S., Qadeer, M.A., et al., 2003. Control of Aspergillus niger morphology to enhance citric acid production under liquid culture. Pak. J. Bot., 35(4):533-539.
[19]Javed, S., Asgher, M., Sheikh, M.A., et al., 2010. Strain improvement through UV and chemical mutagenesis for enhanced citric acid production in molasses-based solid state fermentation. Food Biotechnol., 24(2):165-179.
[20]Kazama, Y., Hirano, T., Saito, H., et al., 2011. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana. BMC Plant Biol., 11(1):161.
[21]Kiefer, J., 1992. Heavy-ion effects on cells: chromosomal-aberrations, mutations and neoplastic transformations. Radiat. Environ. Bioph., 31(4):279-288.
[22]Li, G., Li, H.P., Wang, L.Y., et al., 2008. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Appl. Phys. Lett., 92(22):221504.
[23]Li, S.C., Zhu, Z.Y., Gu, S.B., et al., 2011. Mutation-screening in
[24]Li, S.W., Li, M., Song, H.P., et al., 2011. Induction of a high-yield lovastatin mutant of Aspergillus terreus by 12C6+ heavy-ion beam irradiation and the influence of culture conditions on lovastatin production under submerged fermentation. Appl. Biochem. Biotechnol., 165(3-4):913-925.
[25]Liu, H., Zheng, Z.M., Wang, P., et al., 2013a. Morphological changes induced by class III chitin synthase gene silencing could enhance penicillin production of Penicillium chrysogenum. Appl. Microbiol. Biotechnol., 97(8):3363-3372.
[26]Liu, H., Wang, P., Gong, G.H., et al., 2013b. Morphology engineering of Penicillium chrysogenum by RNA silencing of chitin synthase gene. Biotechnol. Lett., 35(3):423-429.
[27]Liu, J., Zhou, L., Chen, J.H., et al., 2014. Role of ozone in UV-C disinfection, demonstrated by comparison between wild-type and mutant conidia of Aspergillus niger. Photochem. Photobiol., 90(3):615-621.
[28]Liu, Q.F., Wang, Z.Z., Zhou, L.B., et al., 2013. Relationship between plant growth and cytological effect in root apical meristem after exposure of wheat dry seeds to carbon ion beams. Nucl. Instrum. Meth. Phys. Res. B, 305:9-15.
[29]Lotfy, W.A., Ghanem, K.M., El-Helow, E.R., 2007. Citric acid production by a novel Aspergillus niger isolate: I. mutagenesis and cost reduction studies. Bioresource Technol., 98(18):3464-3469.
[30]Lu, Y., Wang, L.Y., Ma, K., et al., 2011. Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochem. Eng. J., 55(1):17-22.
[31]Ma, Y.B., Wang, Z.Y., Zhu, M., et al., 2013. Increased lipid productivity and TAG content in Nannochloropsis by heavy-ion irradiation mutagenesis. Bioresource Technol., 136:360-367.
[32]Mesquita, N., Portugal, A., Pinar, G., et al., 2013. Flow cytometry as a tool to assess the effects of gamma radiation on the viability, growth and metabolic activity of fungal spores. Int. Biodeter. Biodegr., 84:250-257.
[33]Mostafa, Y.S., Alamri, S.A., 2012. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger. Saudi J. Biol. Sci., 19(2):241-246.
[34]Murai, K., Nishiura, A., Kazama, Y., et al., 2013. A large-scale mutant panel in wheat developed using heavy-ion beam mutagenesis and its application to genetic research. Nucl. Instrum. Meth. Phys. Res. B, 314:59-62.
[35]Ota, S., Matsuda, T., Takeshita, T., et al., 2013. Phenotypic spectrum of Parachlorella kessleri (Chlorophyta) mutants produced by heavy-ion irradiation. Bioresource Technol., 149:432-438.
[36]Papagianni, M., Mattey, M., Berovic, M., et al., 1999. Aspergillus niger morphology and citric acid production in submerged batch fermentation: effects of culture pH, phosphate and manganese levels. Food Technol. Biotechnol., 37(3):165-171.
[37]Parekh, S., Vinci, V.A., Strobel, R.J., 2000. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol., 54(3):287-301.
[38]Paul, G.C., Priede, M.A., Thomas, C.R., 1999. Relationship between morphology and citric acid production in submerged Aspergillus niger fermentations. Biochem. Eng. J., 3(2):121-129.
[39]Pel, H.J., de Winde, J.H., Archer, D.B., et al., 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol., 25(2):221-231.
[40]Sarangbin, S., Watanapokasin, Y., 1999. Yam bean starch: a novel substrate for citric acid production by the protease-negative mutant strain of Aspergillus niger. Carbohyd. Polym., 38(3):219-224.
[41]Schuster, E., Dunn-Coleman, N., Frisvad, J.C., et al., 2002. On the safety of Aspergillus niger—a review. Appl. Microbiol. Biot., 59(4-5):426-435.
[42]Shikazono, N., Suzuki, C., Kitamura, S., et al., 2005. Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J. Exp. Bot., 56(412):587-596.
[43]Stentelaire, C., Antoine, N., Cabrol, C., et al., 2001. Development of a rapid and highly sensitive biochemical method for the measurement of fungal spore viability. An alternative to the CFU method. Enzyme Microb. Technol., 29(8-9):560-566.
[44]Suzuki, A., Sarangbin, S., Kirimura, K., et al., 1996. Direct production of citric acid from starch by a 2-deoxyglucose-resistant mutant strain of Aspergillus niger. J. Ferment. Bioeng., 81(4):320-323.
[45]Torrado, A.M., Cortes, S., Salgado, J.M., et al., 2011. Citric acid production from orange peel wastes by solid-state fermentation. Braz. J. Microbiol., 42(1):394-409.
[46]van Leeuwen, M.R., Krijgsheld, P., Bleichrodt, R., et al., 2013. Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles. Stud. Mycol., 74(1):59-70.
[47]Wang, J.F., Li, R.M., Lu, D., et al., 2009. A quick isolation method for mutants with high lipid yield in oleaginous yeast. World J. Microb. Biot., 25(5):921-925.
[48]Wang, L., Zhang, J.H., Cao, Z.L., et al., 2015. Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger. Microb. Cell Fact., 14(1):7.
[49]Wang, L.Y., Huang, Z.L., Li, G., et al., 2010. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J. Appl. Microbiol., 108(3):851-858.
[50]Yang, Y.N., Ren, N., Xue, J.M., et al., 2007. Mutation effect of MeV protons on bioflocculant bacteria Bacillus cereus. Nucl. Instrum. Meth. Phys. Res. B, 262(2):220-224.
[51]Yang, Y.N., Liu, C.L., Wang, Y.K., et al., 2013. Mutation effects of C2+ ion irradiation on the greasy Nitzschia sp. Mut. Res. Fund. Mol. Mech. Mutagen., 751-752:24-28.
[52]Zhang, X., Zhang, X.F., Li, H.P., et al., 2014. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl. Microbiol. Biotechnol., 98(12):5387-5396.
[53]Zhang, X., Zhang, C., Zhou, Q.Q., et al., 2015. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl. Microbiol. Biotechnol., 99(13):5639-5646.
[54]Zhou, L.B., Li, W.J., Yu, L.X., et al., 2006. Linear energy transfer dependence of the effects of carbon ion beams on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Int. J. Radiat. Biol., 82(7):473-481.
[55]Zhou, X., Xin, Z.J., Lu, X.H., et al., 2013. High efficiency degradation crude oil by a novel mutant irradiated from Dietzia strain by 12C6+ heavy ion using response surface methodology. Bioresource Technol., 137:386-393.
Open peer comments: Debate/Discuss/Question/Opinion
<1>