Full Text:   <1150>

Summary:  <343>

Suppl. Mater.: 

CLC number: O636.1; R392.12

On-line Access: 2017-01-26

Received: 2015-11-09

Revision Accepted: 2016-05-07

Crosschecked: 2017-01-05

Cited: 1

Clicked: 2772

Citations:  Bibtex RefMan EndNote GB/T7714


Ju-qing Huang


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.2 P.138-151


Isolation, chemical characterization, and immunomodulatory activity of naturally acetylated hemicelluloses from bamboo shavings

Author(s):  Ju-qing Huang, Rui-ting Qi, Mei-rong Pang, Cong Liu, Guang-yu Li, Ying Zhang

Affiliation(s):  Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   yzhang@zju.edu.cn

Key Words:  Bamboo shavings, Steam explosion pretreatment, Naturally acetylated hemicelluloses, Isolation, Chemical characterization, Immunomodulatory activity

Ju-qing Huang, Rui-ting Qi, Mei-rong Pang, Cong Liu, Guang-yu Li, Ying Zhang. Isolation, chemical characterization, and immunomodulatory activity of naturally acetylated hemicelluloses from bamboo shavings[J]. Journal of Zhejiang University Science B, 2017, 18(2): 138-151.

@article{title="Isolation, chemical characterization, and immunomodulatory activity of naturally acetylated hemicelluloses from bamboo shavings",
author="Ju-qing Huang, Rui-ting Qi, Mei-rong Pang, Cong Liu, Guang-yu Li, Ying Zhang",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Isolation, chemical characterization, and immunomodulatory activity of naturally acetylated hemicelluloses from bamboo shavings
%A Ju-qing Huang
%A Rui-ting Qi
%A Mei-rong Pang
%A Cong Liu
%A Guang-yu Li
%A Ying Zhang
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 2
%P 138-151
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500274

T1 - Isolation, chemical characterization, and immunomodulatory activity of naturally acetylated hemicelluloses from bamboo shavings
A1 - Ju-qing Huang
A1 - Rui-ting Qi
A1 - Mei-rong Pang
A1 - Cong Liu
A1 - Guang-yu Li
A1 - Ying Zhang
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 2
SP - 138
EP - 151
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500274

bamboo shavings, the outer or intermediate layer of bamboo stems, are the bulk of by-products produced in bamboo processing. In this study we investigated the isolation, chemical characterization, and immunostimulatory activity in vitro of the hemicelluloses from bamboo shavings. Shavings were first pretreated by steam explosion. The optimal pretreatment was found to be steam explosion at 2.2 MPa for 1 min. Following this pretreatment, the yield of hemicelluloses reached (2.05±0.22)% (based on the dry dewaxed raw materials), which was 5.7-fold higher than that of untreated samples. Bamboo-shavings hemicellulose (BSH) was then prepared by hot water extraction and ethanol precipitation from the steam-exploded shavings. Purification of BSH by anion-exchange chromatography of diethylaminoethanol (DEAE)-sepharose Fast Flow resulted in a neutral fraction (BSH-1, purity of 95.3%, yield of 1.06%) and an acidic fraction (BSH-2, purity of 92.5%, yield of 0.79%). The weight-average molecular weights (Mw) of BSH-1 and BSH-2 were 12 800 and 11 300 g/mol, respectively. Chemical and structural analyses by Fourier transform infrared spectroscopy (FT-IR), 1D (1H and 13C) and 2D (heteronuclear single quantum correlation (HSQC)) nuclear magnetic resonance (NMR) spectra revealed that BSH-1 was O-acetylated-arabinoxylan and BSH-2 was O-acetylated-(4-O-methylglucurono)-arabinoxylan. BSH-1 had a higher content of acetyl groups than BSH-2. For the immunomodulatory activity in vitro, BSH and BSH-2 significantly stimulated mouse splenocyte proliferation while BSH-1 had no effect; BSH, BSH-1, and BSH-2 markedly enhanced the phagocytosis activity and nitric oxide production of the murine macrophage RAW264.7 in a dose-dependent manner. Our results suggest that the water-extractable hemicelluloses from steam-exploded bamboo shavings are naturally acetylated and have immunostimulatory activity.


结论:当蒸汽爆破压力为2.2 MPa和维压时间为1 min时,BSH的得率达到最大,为(2.05±0.22)%(以脱蜡样品干重计),高于未经处理对照样品5.7倍。通过DEAE-Sepharose Fast Flow阴离子交换柱对BSH进行分离,获得一个中性组分BSH-1(得率0.79%,纯度95.3%)和一个酸性组分BSH-2(得率1.06%,纯度92.5%)。化学结构解析结果表明BSH-1为乙酰化的阿拉伯木聚糖(分子量:12 800),而BSH-2为乙酰化的4-甲氧基-葡萄糖醛酸阿拉伯木聚糖(分子量:11 300)。体外免疫试验结果表明BSH和BSH-2能够显著刺激小鼠脾脏淋巴细胞增殖,而BSH-1无此活性;BSH、BSH-1和BSH-2三者均能显著促进巨噬细胞RAW264.7吞噬中性红及分泌释放NO,且呈现明显的剂量依赖性。综上所述,采用蒸汽爆破预处理联合热水提取法从竹茹中获得的半纤维素含天然乙酰基,并具有体外免疫刺激活性。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Boscá, L., Zeini, M., Través, P.G., et al., 2005. Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology, 208(2):249-258.

[2]Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1):248-254.

[3]Cao, L., Liu, X., Qian, T., et al., 2011. Antitumor and immunomodulatory activity of arabinoxylans: a major constituent of wheat bran. Int. J. Biol. Macromol., 48(1):160-164.

[4]Chen, Y., Duan, J., Qian, D., et al., 2010. Assessment and comparison of immunoregulatory activity of four hydrosoluble fractions of Angelica sinensis in vitro on the peritoneal macrophages in ICR mice. Int. Immunopharmacol., 10(4):422-430.

[5]Chen, Y., Zhang, H., Wang, Y., et al., 2014. Acetylation and carboxymethylation of the polysaccharide from Ganoderma atrum and their antioxidant and immunomodulating activities. Food Chem., 156(8):279-288.

[6]Dai, J., Wu, Y., Chen, S., et al., 2010. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohyd. Polym., 82(3):629-635.

[7]Dubois, M., Gilles, K.A., Hamilton, J.K., et al., 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28(3):350-356.

[8]Ebringerova, A., Hromadkova, Z., Heinze, T., 2005. Hemicellulose. Adv. Polym. Sci., 186:1-67.

[9]Ebringerová, A., Kardo Ová, A., Hromádková, Z., et al., 2002. Immunomodulatory activity of acidic xylans in relation to their structural and molecular properties. Int. J. Biol. Macromol., 30(1):1-6.

[10]Fan, L., Ding, S., Ai, L., et al., 2012. Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus. Carbohyd. Polym., 90(2):870-874.

[11]Geng, Z.C., Sun, R.C., Sun, X.F., et al., 2003. Comparative study of hemicelluloses released during two-stage treatments with acidic organosolv and alkaline peroxide from Caligonum monogoliacum and Tamarix spp. Polym. Degrad. Stabil., 80(2):315-325.

[12]Gírio, F.M., Fonseca, C., Carvalheiro, F., et al., 2010. Hemicelluloses for fuel ethanol: a review. Bioresource Technol., 101(13):4775-4800.

[13]Gong, L., Huang, L., Zhang, Y., 2012. Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity. J. Agric. Food Chem., 60(29):7177-7184.

[14]He, M., Wang, J., Qin, H., et al., 2014. Bamboo: a new source of carbohydrate for biorefinery. Carbohyd. Polym., 111(20):645-654.

[15]Hoffmann, R.A., Geijtenbeek, T., Kamerling, J.P., et al., 1992. 1H-N.m.r. study of enzymically generated wheat-endosperm arabinoxylan oligosaccharides: structures of hepta- to tetradeca-saccharides containing two or three branched xylose residues. Carbohyd. Res., 223:19-44.

[16]Ke, C., Qiao, D., Luo, J., et al., 2013. Immunostimulatory activity and structure of polysaccharide from Streptococcus equi subsp. zooepidemicus. Int. J. Biol. Macromol., 57(6):218-225.

[17]Kenealy, W., Horn, E., Davis, M., et al., 2007. Vapor-phase diethyl oxalate pretreatment of wood chips: Part 2. Release of hemicellulosic carbohydrates. Holzforschung, 61(3):230-235.

[18]Klinke, H.B., Thomsen, A.B., Ahring, B.K., 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol., 66(1):10-26.

[19]Leopold, B., 1961. Chemical composition and physical properties of wood fibers. I. Preparation of holocellulose fibers from loblolly pinewood. TAPPI, 44(3):230-232.

[20]Ma, Y., Xing, Y., Mi, H., et al., 2014. Extraction, preliminary characterization and immunostimulatory activity in vitro of a polysaccharide isolated from Strongylocentrotus nudus eggs. Carbohyd. Polym., 111(1):576-583.

[21]Maekawa, E., 1976. Studies on hemicellulose of bamboo. Wood Res.: Bull. Wood Res. Inst. Kyoto Univ., 59:153-179.

[22]Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65(1):55-63.

[23]Nagata, J., Higashiuesato, Y., Maeda, G., et al., 2001. Effects of water-soluble hemicellulose from soybean hull on serum antibody levels and activation of macrophages in rats. J. Agric. Food Chem., 49(10):4965-4970.

[24]Peng, P., Peng, F., Bian, J., et al., 2011a. Isolation and structural characterization of hemicelluloses from the bamboo species Phyllostachys incarnata Wen. Carbohyd. Polym., 86(2):883-890.

[25]Peng, P., Peng, F., Bian, J., et al., 2011b. Studies on the starch and hemicelluloses fractionated by graded ethanol precipitation from bamboo Phyllostachys bambusoides f. shouzhu Yi. J. Agric. Food Chem., 59(6):2680-2688.

[26]Scheller, H.V., Ulvskov, P., 2010. Hemicelluloses. Annu. Rev. Plant Biol., 61(1):263-289.

[27]Sella Kapu, N., Trajano, H.L., 2014. Review of hemicellulose hydrolysis in softwoods and bamboo. Biofuel. Bioprod. Bior., 8(6):857-870.

[28]Song, H., Yang, R., Zhao, W., et al., 2014. Innovative assistant extraction of flavonoids from pine (Larix olgensis Henry) needles by high density steam flash-explosion. J. Agric. Food Chem., 62(17):3806-3812.

[29]Sukhbaatar, B., Hassan, E.B., Kim, M., et al., 2014. Optimization of hot-compressed water pretreatment of bagasse and characterization of extracted hemicelluloses. Carbohyd. Polym., 101(1):196-202.

[30]Sun, S., Cao, X., Xu, F., et al., 2014. Structure and thermal property of alkaline hemicelluloses from steam exploded Phyllostachys pubescens. Carbohyd. Polym., 101(1):1191-1197.

[31]Teleman, A., Lundqvist, J., Tjerneld, F., et al., 2000. Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohyd. Res., 329(4):807-815.

[32]Wang, Q.H., Shu, Z.P., Xu, B.Q., et al., 2014. Structural characterization and antioxidant activities of polysaccharides from Citrus aurantium L. Int. J. Biol. Macromol., 67(6):112-123.

[33]Wen, J., Xiao, L., Sun, Y., et al., 2011. Comparative study of alkali-soluble hemicelluloses isolated from bamboo (Bambusa rigida). Carbohyd. Res., 346(1):111-120.

[34]Yang, D., Zhong, L., Yuan, T., et al., 2013. Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extraction from bamboo. Ind. Crop. Prod., 43(5):141-149.

[35]Yi, Y., Zhang, M., Liao, S., et al., 2012. Effects of alkali dissociation on the molecular conformation and immunomodulatory activity of longan pulp polysaccharide (LPI). Carbohyd. Polym., 87(2):1311-1317.

[36]Yu, Z., Xu, D., Lu, L., et al., 2016. Immunomodulatory effect of a formula developed from American ginseng and Chinese jujube extracts in mice. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 17(2):147-157.

[37]Zhao, T., Mao, G., Mao, R., et al., 2013. Antitumor and immunomodulatory activity of a water-soluble low molecular weight polysaccharide from Schisandra chinensis (Turcz.) Baill. Food Chem. Toxicol., 55(1):609-616.

[38]Zhao, W., Yang, R., Zhang, Y., et al., 2012. Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam flash-explosion. Green Chem., 14(12):3352-3360.

[39]Zheng, W., Zhao, T., Feng, W., et al., 2014. Purification, characterization and immunomodulating activity of a polysaccharide from flowers of Abelmoschus esculentus. Carbohyd. Polym., 106(1):335-342.

[40]List of electronic supplementary materials

[41]Table S1 1H NMR chemical shifts (relative to an internal H2O, δH=4.70 ppm) of constituent monosaccharide residues in BSH-1 and BSH-2

[42]Table S2 13C NMR chemical shifts (relative to an internal acetone-d6, δC=30.50 ppm) of constituent monosaccharide residues in BSH-1 and BSH-2

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE