Full Text:   <2524>

Summary:  <1447>

CLC number: Q-1

On-line Access: 2019-05-15

Received: 2019-03-25

Revision Accepted: 2019-04-18

Crosschecked: 2019-04-23

Cited: 0

Clicked: 3532

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2019 Vol.20 No.5 P.437-448

http://doi.org/10.1631/jzus.B1900150


O-GlcNAcylation, a sweet link to the pathology of diseases


Author(s):  Hao Nie, Wen Yi

Affiliation(s):  MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   wyi@zju.edu.cn

Key Words:  O-GlcNAcylation, Cancer, Diabetes, Neurodegenerative disease, Cardiovascular disease


Hao Nie, Wen Yi. O-GlcNAcylation, a sweet link to the pathology of diseases[J]. Journal of Zhejiang University Science B, 2019, 20(5): 437-448.

@article{title="O-GlcNAcylation, a sweet link to the pathology of diseases",
author="Hao Nie, Wen Yi",
journal="Journal of Zhejiang University Science B",
volume="20",
number="5",
pages="437-448",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1900150"
}

%0 Journal Article
%T O-GlcNAcylation, a sweet link to the pathology of diseases
%A Hao Nie
%A Wen Yi
%J Journal of Zhejiang University SCIENCE B
%V 20
%N 5
%P 437-448
%@ 1673-1581
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1900150

TY - JOUR
T1 - O-GlcNAcylation, a sweet link to the pathology of diseases
A1 - Hao Nie
A1 - Wen Yi
J0 - Journal of Zhejiang University Science B
VL - 20
IS - 5
SP - 437
EP - 448
%@ 1673-1581
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1900150


Abstract: 
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic post-translational modification occurring on myriad proteins in the cell nucleus, cytoplasm, and mitochondria. The donor sugar for O-GlcNAcylation, uridine-diphosphate N-acetylglucosamine (UDP-GlcNAc), is synthesized from glucose through the hexosamine biosynthetic pathway (HBP). The recycling of O-GlcNAc on proteins is mediated by two enzymes in cells—O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and removal of O-GlcNAc, respectively. O-GlcNAcylation is involved in a number of important cell processes including transcription, translation, metabolism, signal transduction, and apoptosis. Deregulation of O-GlcNAcylation has been reported to be associated with various human diseases such as cancer, diabetes, neurodegenerative diseases, and cardiovascular diseases. A better understanding of the roles of O-GlcNAcylation in physiopathological processes would help to uncover novel avenues for therapeutic intervention. The aim of this review is to discuss the recent updates on the mechanisms and impacts of O-GlcNAcylation on these diseases, and its potential as a new clinical target.

O-GlcNAc修饰与疾病病理学的联系

概要:O-连接的N-乙酰葡萄糖胺(O-GlcNAc)修饰是一种发生于蛋白质丝氨酸或苏氨酸残基上的蛋白翻译后修饰,它能动态地发生在细胞的任何部位,如细胞质、线粒体、细胞核等.O-GlcNAc修饰的供体尿苷二磷酸-N-乙酰葡萄糖胺(UDP-GlcNAc)是己糖胺生物合成途径(HBP)的终产物.GlcNAc在蛋白上的添加和移除分别需要O-GlcNAc转移酶(OGT)和O-GlcNAc水解酶(OGA)的介导.被O-GlcNAc修饰的蛋白包括转录因子、代谢酶、细胞信号传导因子等.O-GlcNAc通过调控这些蛋白的功能参与到许多重要的生物进程中,如转录、翻译、代谢、信号传导、自噬等.此外,O-GlcNAc修饰的失调还与许多重要疾病息息相关,包括癌症、糖尿病、神经退行性疾病和心血管疾病.更好地了解O-GlcNAc修饰在这些疾病生理病理学进程中所起的作用将有助于开发新的治疗策略.本文介绍了O-GlcNAc与疾病病理联系的最新研究,并揭示O-GlcNAc可作为潜在的临床治疗靶点.
关键词:O连接的N-乙酰葡萄糖胺(O-GlcNAc);癌症;糖尿病;神经退行性疾病;心血管疾病

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Andrali SS, Qian QW, Özcan S, 2007. Glucose mediates the translocation of neurod1 by O-linked glycosylation. J Biol Chem, 282(21):15589-15596.

[2]Ball LE, Berkaw MN, Buse MG, 2006. Identification of the major site of O-linked β-N-acetylglucosamine modification in the C terminus of insulin receptor substrate-1. Mol Cell Proteom, 5(2):313-323.

[3]Banerjee PS, Lagerlöf O, Hart GW, 2016. Roles of O-GlcNAc in chronic diseases of aging. Mol Aspects Med, 51:1-15.

[4]Bond MR, Hanover JA, 2015. A little sugar goes a long way: the cell biology of O-GlcNAc. J Cell Biol, 208(7):869-880.

[5]Borghgraef P, Menuet C, Theunis C, et al., 2013. Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301l mice. PLoS ONE, 8(12):e84442.

[6]Bray F, Ferlay J, Soerjomataram I, et al., 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6):394-424.

[7]Buono R, Longo VD, 2018. Starvation, stress resistance, and cancer. Trends Endocrinol Metab, 29(4):271-280.

[8]Butkinaree C, Park K, Hart GW, 2010. O-linked β-N-acetylglucosamine (O-GlcNAc):extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta, 1800(2):96-106.

[9]Carpenter R, DiChiacchio T, Barker K, 2019. Interventions for self-management of type 2 diabetes: an integrative review. Int J Nurs Sci, 6(1):70-91.

[10]Cecioni S, Vocadlo DJ, 2013. Tools for probing and perturbing O-GlcNAc in cells and in vivo. Curr Opin Chem Biol, 17(5):719-728.

[11]Champattanachai V, Marchase RB, Chatham JC, 2007. Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc. Am J Physiol Cell Physiol, 292(1):C178-C187.

[12]Chen YX, Jin L, Xue B, et al., 2017. Nrage induces β-catenin/ Arm O-GlcNAcylation and negatively regulates Wnt signaling. Biochem Biophys Res Commun, 487(2):433-437.

[13]Chetan MR, Thrower SL, Narendran P, 2019. What is type 1 diabetes? Medicine, 47(1):5-9.

[14]Chou TY, Hart GW, Dang CV, 1995. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem, 270(32):18961-18965.

[15]Cooper C, Sommerlad A, Lyketsos CG, et al., 2015. Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. Am J Psychiatry, 172(4):323-334.

[16]Cui C, Zhou XL, Zhang WD, et al., 2018. Is β-catenin a druggable target for cancer therapy? Trends Biochem Sci, 43(8):623-634.

[17]Darley-Usmar VM, Ball LE, Chatham JC, 2012. Protein O-linked β-N-acetylglucosamine: a novel effector of cardiomyocyte metabolism and function. J Mol Cell Cardiol, 52(3):538-549.

[18]Dassanayaka S, Jones SP, 2014. O-GlcNAc and the cardiovascular system. Pharmacol Ther, 142(1):62-71.

[19]de Jesus T, Shukla S, Ramakrishnan P, 2018. Too sweet to resist: control of immune cell function by O-GlcNAcylation. Cell Immunol, 333:85-92.

[20]Dubois-Deruy E, Belliard A, Mulder P, et al., 2015. Interplay between troponin T phosphorylation and O-N-acetylglucosaminylation in ischaemic heart failure. Cardiovasc Res, 107(1):56-65.

[21]Durning SP, Flanagan-Steet H, Prasad N, et al., 2016. O-linked β-N-acetylglucosamine (O-GlcNAc) acts as a glucose sensor to epigenetically regulate the insulin gene in pancreatic beta cells. J Biol Chem, 291(5):2107-2118.

[22]Ferrer CM, Sodi VL, Reginato MJ, 2016. O-GlcNAcylation in cancer biology: linking metabolism and signaling. J Mol Biol, 428(16):3282-3294.

[23]Ferron M, Denis M, Persello A, et al., 2018. Protein O-GlcNAcylation in cardiac pathologies: past, present, future. Front Endocrinol (Lausanne), 9:819.

[24]Gao Y, Miyazaki JI, Hart GW, 2003. The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in Min6 β-cells. Arch Biochem Biophys, 415(2):155-163.

[25]Graham DL, Gray AJ, Joyce JA, et al., 2014. Increased O-GlcNAcylation reduces pathological tau without affecting its normal phosphorylation in a mouse model of tauopathy. Neuropharmacology, 79:307-313.

[26]Gudala K, Bansal D, Schifano F, et al., 2013. Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. J Diabetes Investig, 4(6):640-650.

[27]Ha JR, Hao L, Venkateswaran G, et al., 2014. β-Catenin is O-GlcNAc glycosylated at serine 23: implications for β-catenin’s subcellular localization and transactivator function. Exp Cell Res, 321(2):153-166.

[28]Harosh-Davidovich SB, Khalaila I, 2018. O-GlcNAcylation affects β-catenin and E-cadherin expression, cell motility and tumorigenicity of colorectal cancer. Exp Cell Res, 364(1):42-49.

[29]Hurtado MD, Vella A, 2019. What is type 2 diabetes? Medicine, 47(1):10-15.

[30]Hwang H, Rhim H, 2018. Functional significance of O-GlcNAc modification in regulating neuronal properties. Pharmacol Res, 129:295-307.

[31]Issad T, Masson E, Pagesy P, 2010. O-GlcNAc modification, insulin signaling and diabetic complications. Diabetes Metab, 36(6):423-435.

[32]Itkonen HM, Minner S, Guldvik IJ, et al., 2013. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res, 73(16):5277-5287.

[33]Jiang JY, Lazarus MB, Pasquina L, et al., 2011. A neutral diphosphate mimic crosslinks the active site of human O-GlcNAc transferase. Nat Chem Biol, 8(1):72-77.

[34]Joiner CM, Li H, Jiang JY, et al., 2019. Structural characterization of the O-GlcNAc cycling enzymes: insights into substrate recognition and catalytic mechanisms. Curr Opin Struct Biol, 56:97-106.

[35]Jones SP, Zachara NE, Ngoh GA, et al., 2008. Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation, 117(9):1172-1182.

[36]Kim C, Nam DW, Park SY, et al., 2013. O-linked β-N-acetylglucosaminidase inhibitor attenuates β-amyloid plaque and rescues memory impairment. Neurobiol Aging, 34(1):275-285.

[37]Lee TN, Alborn WE, Knierman MD, et al., 2006. Alloxan is an inhibitor of O-GlcNAc-selective N-acetyl-β-D-glucosaminidase. Biochem Biophys Res Commun, 350(4):1038-1043.

[38]Leney AC, el Atmioui D, Wu W, et al., 2017. Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation. Proc Natl Acad Sci USA, 114(35):E7255-E7261.

[39]Liberti MV, Locasale JW, 2016. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci, 41(3):211-218.

[40]Lim S, Haque MM, Nam G, et al., 2015. Monitoring of intracellular tau aggregation regulated by OGA/OGT inhibitors. Int J Mol Sci, 16(9):20212-20224.

[41]Lin G, Wang LP, Marcogliese PC, et al., 2019. Sphingolipids in the pathogenesis of Parkinson’s disease and Parkinsonism. Trends Endocrinol Metab, 30(2):106-117.

[42]Liu Y, Dai SJ, Xing LJ, et al., 2015. O-linked β-N-acetylglucosamine modification and its biological functions. Sci Bull, 60(12):1055-1061.

[43]Ma ZY, Vocadlo DJ, Vosseller K, 2013. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-κB activity in pancreatic cancer cells. J Biol Chem, 288(21):15121-15130.

[44]Macauley MS, Vocadlo DJ, 2010. Increasing O-GlcNAc levels: an overview of small-molecule inhibitors of O-GlcNAcase. Biochim Biophys Acta, 1800(2):107-121.

[45]Macauley MS, Shan XY, Yuzwa SA, et al., 2010. Elevation of global O-GlcNAc in rodents using a selective O-GlcNAcase inhibitor does not cause insulin resistance or perturb glucohomeostasis. Chem Biol, 17(9):949-958.

[46]Mailleux F, Gélinas R, Beauloye C, et al., 2016. O-GlcNAcylation, enemy or ally during cardiac hypertrophy development? Biochim Biophys Acta, 1862(12):2232-2243.

[47]Marotta NP, Cherwien CA, Abeywardana T, et al., 2012. O-GlcNAc modification prevents peptide-dependent acceleration of α-synuclein aggregation. Chembiochem, 13(18):2665-2670.

[48]Marotta NP, Lin YH, Lewis YE, et al., 2015. O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson’s disease. Nat Chem, 7(11):913-920.

[49]Marsh SA, Collins HE, Chatham JC, 2014. Protein O-GlcNAcylation and cardiovascular (patho)physiology. J Biol Chem, 289(50):34449-34456.

[50]McClain DA, Lubas WA, Cooksey RC, et al., 2002. Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc Natl Acad Sci USA, 99(16):10695-10699.

[51]Ngoh GA, Hamid T, Prabhu SD, et al., 2009. O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death. Am J Physiol Heart Circ Physiol, 297(5):H1711-H1719.

[52]Özcan S, Andrali SS, Cantrell JEL, 2010. Modulation of transcription factor function by O-GlcNAc modification. Biochim Biophys Acta, 1799(5-6):353-364.

[53]Patel M, Horgan PG, McMillan DC, et al., 2018. NF-κB pathways in the development and progression of colorectal cancer. Transl Res, 197:43-56.

[54]Peterson SB, Hart GW, 2016. New insights: a role for O-GlcNAcylation in diabetic complications. Crit Rev Biochem Mol Biol, 51(3):150-161.

[55]Pinho TS, Verde DM, Correia SC, et al., 2018. O-GlcNAcylation and neuronal energy status: implications for Alzheimer’s disease. Ageing Res Rev, 46:32-41.

[56]Ramirez-Correa GA, Ma JF, Slawson C, et al., 2015. Removal of abnormal myofilament O-GlcNAcylation restores Ca2+ sensitivity in diabetic cardiac muscle. Diabetes, 64(10):3573-3587.

[57]Rao XJ, Duan XT, Mao WM, et al., 2015. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat Commun, 6:8468.

[58]Rowe EM, Xing V, Biggar KK, 2019. Lysine methylation: implications in neurodegenerative disease. Brain Res, 1707:164-171.

[59]Smet-Nocca C, Broncel M, Wieruszeski JM, et al., 2011. Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Mol Biosyst, 7(5):1420-1429.

[60]Snipelisky D, Chaudhry SP, Stewart GC, 2019. The many faces of heart failure. Card Electrophysiol Clin, 11(1):11-20.

[61]Tan JZA, Gleeson PA, 2019. The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer’s disease. Biochim Biophys Acta, 1861(4):697-712.

[62]Teo CF, Wollaston-Hayden EE, Wells L, 2010. Hexosamine flux, the O-GlcNAc modification, and the development of insulin resistance in adipocytes. Mol Cell Endocrinol, 318(1-2):44-53.

[63]van Giau V, An SSA, Hulme JP, 2018. Mitochondrial therapeutic interventions in Alzheimer’s disease. J Neurol Sci, 395:62-70.

[64]Vosseller K, Wells L, Lane MD, et al., 2002. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in AKT activation in 3T3-L1 adipocytes. Proc Natl Acad Sci USA, 99(8):5313-5318.

[65]Wang Y, Liu J, Jin X, et al., 2017. O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. Proc Natl Acad Sci USA, 114(52):13732-13737.

[66]Wani WY, Chatham JC, Darley-Usmar V, et al., 2017. O-GlcNAcylation and neurodegeneration. Brain Res Bull, 133:80-87.

[67]Watson LJ, Facundo HT, Ngoh GA, et al., 2010. O-linked β-N-acetylglucosamine transferase is indispensable in the failing heart. Proc Natl Acad Sci USA, 107(41):17797-17802.

[68]Whelan SA, Dias WB, Thiruneelakantapillai L, et al., 2010. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-linked β-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem, 285(8):5204-5211.

[69]Xu WQ, Zhang X, Wu JL, et al., 2017. O-GlcNAc transferase promotes fatty liver-associated liver cancer through inducing palmitic acid and activating endoplasmic reticulum stress. J Hepatol, 67(2):310-320.

[70]Yang SL, Zou LY, Bounelis P, et al., 2006. Glucosamine administration during resuscitation improves organ function after trauma hemorrhage. Shock, 25(6):600-607.

[71]Yang WH, Park SY, Nam HW, et al., 2008a. NFκB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. Proc Natl Acad Sci USA, 105(45):17345-17350.

[72]Yang XY, Ongusaha PP, Miles PD, et al., 2008b. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature, 451(7181):964-969.

[73]Yi W, Clark PM, Mason DE, et al., 2012. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science, 337(6097):975-980.

[74]Yuzwa SA, Macauley MS, Heinonen JE, et al., 2008. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol, 4(8):483-490.

[75]Zachou G, Armeni E, Lambrinoudaki I, 2019. Lactation and maternal cardiovascular disease risk in later life. Maturitas, 122:73-79.

[76]Zhu YP, Shan XY, Yuzwa SA, et al., 2014. The emerging link between O-GlcNAc and Alzheimer disease. J Biol Chem, 289(50):34472-34481.

[77]Zou LY, Yang SL, Hu SH, et al., 2007. The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels. Shock, 27(4):402-408.

[78]Zou LY, Yang SL, Champattanachai V, et al., 2009. Glucosamine improves cardiac function following trauma-hemorrhage by increased protein O-GlcNAcylation and attenuation of NF-κB signaling. Am J Physiol Heart Circ Physiol, 296(2):H515-H523.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE