Full Text:   <1822>

Summary:  <659>

CLC number: 

On-line Access: 2022-01-12

Received: 2021-05-21

Revision Accepted: 2021-08-22

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3213

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Azizi MISKON

https://orcid.org/0000-0002-4267-4180

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2022 Vol.23 No.1 P.42-57

http://doi.org/10.1631/jzus.B2100443


Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios


Author(s):  Haslinda Abdul HAMID, Vahid Hosseinpour SARMADI, Vivek PRASAD, Rajesh RAMASAMY, Azizi MISKON

Affiliation(s):  Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia; more

Corresponding email(s):   azizimiskon@upnm.edu.my

Key Words:  Electromagnetic field, Proliferation, Mesenchymal stem cell, Therapy


Haslinda Abdul HAMID, Vahid Hosseinpour SARMADI, Vivek PRASAD, Rajesh RAMASAMY, Azizi MISKON. Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios[J]. Journal of Zhejiang University Science B, 2022, 23(1): 42-57.

@article{title="Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios",
author="Haslinda Abdul HAMID, Vahid Hosseinpour SARMADI, Vivek PRASAD, Rajesh RAMASAMY, Azizi MISKON",
journal="Journal of Zhejiang University Science B",
volume="23",
number="1",
pages="42-57",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2100443"
}

%0 Journal Article
%T Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios
%A Haslinda Abdul HAMID
%A Vahid Hosseinpour SARMADI
%A Vivek PRASAD
%A Rajesh RAMASAMY
%A Azizi MISKON
%J Journal of Zhejiang University SCIENCE B
%V 23
%N 1
%P 42-57
%@ 1673-1581
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2100443

TY - JOUR
T1 - Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios
A1 - Haslinda Abdul HAMID
A1 - Vahid Hosseinpour SARMADI
A1 - Vivek PRASAD
A1 - Rajesh RAMASAMY
A1 - Azizi MISKON
J0 - Journal of Zhejiang University Science B
VL - 23
IS - 1
SP - 42
EP - 57
%@ 1673-1581
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2100443


Abstract: 
Mesenchymal stem/stromal cell (MSC)‍-based therapy has been regarded as one of the most revolutionary breakthroughs in the history of modern medicine owing to its myriad of immunoregulatory and regenerative properties. With the rapid progress in the fields of osteo- and musculoskeletal therapies, the demand for MSC-based treatment modalities is becoming increasingly prominent. In this endeavor, researchers around the world have devised new and innovative techniques to support the proliferation of MSCs while minimizing the loss of hallmark features of stem cells. One such example is electromagnetic field (EMF) exposure, which is an alternative approach with promising potential. In this review, we present a critical discourse on the efficiency, practicability, and limitations of some of the relevant methods, with insurmountable evidence backing the implementation of EMF as a feasible strategy for the clinically relevant expansion of MSCs.

电磁场暴露作为在临床相关情况下增强间充质干细胞增殖和分化的一种可行方法

概述:在这篇综述中,我们对一些相关方法的效率、实用性和局限性进行了批判性讨论,并支持将电磁场(EMF)作为临床相关间充质干细胞(MSCs)扩展的可行策略。本文旨在寻找促进MSCs增殖和分化而没有细胞毒性和基因毒性作用的新疗法,可以为再生医学和组织工程领域带来新的思路。随着最近细胞培养方法的进步和专用生物反应器的出现,EMF疗法显然是进一步促进MSCs增殖和分化的一种有前途的方法。在过去,EMF疗法已被证实是一种成功用作治疗骨病的有效且非侵入性的方法。同时,各种研究结果证明了0.2-5.0 mT和15-75 Hz的EMF对不同治疗时间的MSCs增殖和分化的积极影响。尽管EMF暴露作为MSCs临床扩展的新策略已显示出巨大潜力,但有必要进一步检查EMF的核心特性,以确定在增强MSCs增殖的同时保持其分化潜能和干细胞的独特暴露范围。

关键词:电磁场;增殖;间充质干细胞;治疗

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aggarwal S, Pittenger MF, 2005. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4):1815-1822.

[2]Alt EU, Senst C, Murthy SN, et al., 2012. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res, 8(2):215-225.

[3]Ang XM, Lee MHC, Blocki A, et al., 2014. Macromolecular crowding amplifies adipogenesis of human bone marrow-derived mesenchymal stem cells by enhancing the pro-adipogenic microenvironment. Tissue Eng Part A, 20(5-6):966-981.

[4]Asadian N, Jadidi M, Safari M, et al., 2021. EMF frequency dependent differentiation of rat bone marrow mesenchymal stem cells to astrocyte cells. Neurosci Lett, 744:135587.

[5]Assiotis A, Sachinis NP, Chalidis BE, 2012. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature. J Orthop Surg Res, 7:24.

[6]Barry FP, Murphy JM, English K, et al., 2005. Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev, 14(3):252-265.

[7]Bas G, Loisate S, Hudon SF, et al., 2020. Low intensity vibrations augment mesenchymal stem cell proliferation and differentiation capacity during in vitro expansion. Sci Rep, 10:9369.

[8]Bernardo ME, Fibbe WE, 2012. Safety and efficacy of mesenchymal stromal cell therapy in autoimmune disorders. Ann NY Acad Sci, 1266(1):107-117.

[9]Bernardo ME, Avanzini MA, Perotti C, et al., 2007. Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substitute. J Cell Physiol, 211(1):121-130.

[10]Bianchi G, Banfi A, Mastrogiacomo M, et al., 2003. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res, 287(1):98-105.

[11]Bloise N, Petecchia L, Ceccarelli G, et al., 2018. The effect of pulsed electromagnetic field exposure on osteoinduction of human mesenchymal stem cells cultured on nano-TiO2 surfaces. PLoS ONE, 13(6):e0199046.

[12]Bruno S, Collino F, Deregibus MC, et al., 2013. Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev, 22(5):758-771.

[13]Butler J, Epstein SE, Greene SJ, et al., 2017. Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: safety and efficacy results of a phase II-A randomized trial. Circ Res, 120(2):332-340.

[14]Carlsson PO, Svahn MG, 2018. Wharton’s jelly derived allogeneic mesenchymal stromal cells for treatment of type 1 diabetes: study protocol for a double-blinded, randomized, parallel, placebo-controlled trial. Clin Trials Degener Dis, 3(2):32-37.

[15]Carpenter DO, Ayrapetyan S, 1994. Biological Effects of Electric and Magnetic Fields: Sources and Mechanisms. Academic Press, San Diego, USA, p.1-357.

[16]Cheing GLY, Li XH, Huang L, et al., 2014. Pulsed electromagnetic fields (PEMF) promote early wound healing and myofibroblast proliferation in diabetic rats. Bioelectromagnetics, 35(3):161-169.

[17]Chen JY, Tu C, Tang XY, et al., 2019. The combinatory effect of sinusoidal electromagnetic field and VEGF promotes osteogenesis and angiogenesis of mesenchymal stem cell-laden PCL/HA implants in a rat subcritical cranial defect. Stem Cell Res Ther, 10:379.

[18]Chen MS, Peng J, Xie Q, et al., 2019. Mesenchymal stem cells alleviate moderate-to-severe psoriasis by reducing the production of type I interferon (IFN-I) by plasmacytoid dendritic cells (pDCs). Stem Cells Int, 2019:6961052.

[19]Cheng K, Zou CH, 2006. Electromagnetic field effect on separation of nucleotide sequences and unwinding of a double helix during DNA replication. Med Hypotheses, 66(1):148-153.

[20]Childs BG, Durik M, Baker DJ, et al., 2015. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med, 21(12):1424-1435.

[21]Choi KM, Seo YK, Yoon HH, et al., 2008. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng, 105(6):586-594.

[22]Chung YW, Yang HY, Kang SJ, et al., 2021. Allogeneic umbilical cord blood-derived mesenchymal stem cells combined with high tibial osteotomy: a retrospective study on safety and early results. Int Orthop, 45(2):481-488.

[23]Connick P, Kolappan M, Crawley C, et al., 2012. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol, 11(2):150-156.

[24]D'Angelo C, Costantini E, Kamal MA, et al., 2015. Experimental model for ELF-EMF exposure: concern for human health. Saudi J Biol Sci, 22(1):75-84.

[25]de Bari C, 2015. Are mesenchymal stem cells in rheumatoid arthritis the good or bad guys? Arthritis Res Ther, 17:113.

[26]de Francesco F, Ricci G, D'Andrea F, et al., 2015. Human adipose stem cells: from bench to bedside. Tissue Eng Part B Rev, 21(6):572-584.

[27]de Girolamo L, Stanco D, Galliera E, et al., 2013. Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells. Cell Biochem Biophys, 66(3):697-708.

[28]Doucet C, Ernou I, Zhang YZ, et al., 2005. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol, 205(2):228-236.

[29]Ehnert S, van Griensven M, Unger M, et al., 2018. Co-culture with human osteoblasts and exposure to extremely low frequency pulsed electromagnetic fields improve osteogenic differentiation of human adipose-derived mesenchymal stem cells. Int J Mol Sci, 19(4):994.

[30]el Omar R, Beroud J, Stoltz JF, et al., 2014. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev, 20(5):523-544.

[31]Erpicum P, Weekers L, Detry O, et al., 2019. Infusion of third-party mesenchymal stromal cells after kidney transplantation: a phase I-II, open-label, clinical study. Kidney Int, 95(3):693-707.

[32]Esposito M, Lucariello A, Costanzo C, et al., 2013. Differentiation of human umbilical cord-derived mesenchymal stem cells, WJ-MSCs, into chondrogenic cells in the presence of pulsed electromagnetic fields. In Vivo, 27(4):495-500.

[33]Ezashi T, Das P, Roberts RM, 2005. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA, 102(13):4783-4788.

[34]Fan WX, Qian FH, Ma QL, et al., 2015. 50 Hz electromagnetic field exposure promotes proliferation and cytokine production of bone marrow mesenchymal stem cells. Int J Clin Exp Med, 8(5):7394-7404.

[35]Ferroni L, Gardin C, Dolkart O, et al., 2018. Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-‍αmediated inflammatory conditions: an in-vitro study. Sci Rep, 8:5108.

[36]Florea V, Rieger AC, DiFede DL, et al., 2017. Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (the TRIDENT study). Circ Res, 121(11):1279-1290.

[37]Fong CY, Richards M, Manasi N, et al., 2007. Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod BioMed Online, 15(6):708-718.

[38]Fossett E, Khan WS, 2012. Optimising human mesenchymal stem cell numbers for clinical application: a literature review. Stem Cells Int, 2012:465259.

[39]Freitag J, Bates D, Boyd R, et al., 2016. Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy—a review. BMC Musculoskelet Disord, 17:230.

[40]Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV, 1966. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, 16(3):381-390.

[41]Fung M, Yuan Y, Atkins H, et al., 2017. Responsible translation of stem cell research: an assessment of clinical trial registration and publications. Stem Cell Rep, 8(5):‍1190-1201.

[42]Geng DY, Li CH, Wan XW, et al., 2014. Biochemical kinetics of cell proliferation regulated by extremely low frequency electromagnetic field. BioMed Mater Eng, 24(1):‍1391-1397.

[43]Gharibi B, Hughes FJ, 2012. Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl Med, 1(11):771-782.

[44]Golpanian S, Schulman IH, Ebert RF, et al., 2016. Concise review: review and perspective of cell dosage and routes of administration from preclinical and clinical studies of stem cell therapy for heart disease. Stem Cells Transl Med, 5(2):186-191.

[45]Haddad JB, Obolensky AG, Shinnick P, 2007. The biologic effects and the therapeutic mechanism of action of electric and electromagnetic field stimulation on bone and cartilage: new findings and a review of earlier work. J Altern Complement Med, 13(5):485-490.

[46]Hanna H, Andre FM, Mir LM, 2017. Electrical control of calcium oscillations in mesenchymal stem cells using microsecond pulsed electric fields. Stem Cell Res Ther, 8:91.

[47]Haque N, Rahman MT, Abu Kasim NH et al., 2013. Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. Sci World J, 2013:632972.

[48]Hare JM, DiFede DL, Rieger AC, et al., 2017. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial. J Am Coll Cardiol, 69(5):526-537.

[49]Harmer D, Falank C, Reagan MR, 2019. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Front Endocrinol, 9:788.

[50]Hashimoto Y, Nishida Y, Takahashi S, et al., 2019. Transplantation of autologous bone marrow-derived mesenchymal stem cells under arthroscopic surgery with microfracture versus microfracture alone for articular cartilage lesions in the knee: a multicenter prospective randomized control clinical trial. Regen Ther, 11:106-113.

[51]Hu HZ, Yang WB, Zeng QW, et al., 2020. Promising application of pulsed electromagnetic fields (PEMFs) in musculoskeletal disorders. Biomed Pharmacother, 2020(131): 110767.

[52]Iacobaeus E, Kadri N, Lefsihane K, et al., 2019. Short and long term clinical and immunologic follow up after bone marrow mesenchymal stromal cell therapy in progressive multiple sclerosis—a phase I study. J Clin Med, 8(12):2102.

[53]Ieran M, Zaffuto S, Bagnacani M, et al., 1990. Effect of low frequency pulsing electromagnetic fields on skin ulcers of venous origin in humans: a double-blind study. J Orthop Res, 8(2):276-282.

[54]Ikebe C, Suzuki K, 2014. Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols. BioMed Res Int, 2014:951512.

[55]Ivancsits S, Pilger A, Diem E, et al., 2005. Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat Res, 583(2):184-188.

[56]Jasti AC, Wetzel BJ, Aviles H, et al., 2001. Effect of a wound healing electromagnetic field on inflammatory cytokine gene expression in rats. Biomed Sci Instrum, 37:209-214.

[57]Jazayeri M, Shokrgozar MA, Haghighipour N, et al., 2017. Effects of electromagnetic stimulation on gene expression of mesenchymal stem cells and repair of bone lesions. Cell J, 19(1):34-44.

[58]Jeong WY, Kim JB, Kim HJ, et al., 2017. Extremely low-frequency electromagnetic field promotes astrocytic differentiation of human bone marrow mesenchymal stem cells by modulating SIRT1 expression. Biosci Biotechnol Biochem, 81(7):1356-1362.

[59]Jiang RH, Han ZB, Zhuo GS, et al., 2011. Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Front Med, 5(1):94-100.

[60]Kaszuba-Zwoinska J, Chorobik P, Juszczak K, et al., 2012. Pulsed electromagnetic field affects intrinsic and endoplasmatic reticulum apoptosis induction pathways in MonoMac6 cell line culture. J Physiol Pharmacol, 63(5):537-545.

[61]Kelly DJ, Jacobs CR, 2010. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today, 90(1):75-85.

[62]Kim MO, Jung H, Kim SC, et al., 2015. Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Med, 35(1):153-160.

[63]Klyushnenkova E, Mosca JD, Zernetkina V, et al., 2005. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci, 12(1):47-57.

[64]Kolf CM, Cho E, Tuan RS, 2007. Mesenchymal stromal cells: biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther, 9:204.

[65]Kumar A, Salimath BP, Stark GB, et al., 2010. Platelet-derived growth factor receptor signaling is not involved in osteogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A, 16(3):983-993.http://doi.org/10.1089/ten.tea.2009.0230

[66]Kurtz A, 2008. Mesenchymal stem cell delivery routes and fate. Int J Stem Cells, 1(1):1-7.

[67]Kurtzberg J, Abdel-Azim H, Carpenter P, et al., 2020. A phase 3, single-arm, prospective study of remestemcel-l, ex vivo culture-expanded adult human mesenchymal stromal cells for the treatment of pediatric patients who failed to respond to steroid treatment for acute graft-versus-host disease. Biol Blood Marrow Transplant, 26(5):845-854.

[68]Lee MN, Hwang HS, Oh SH, et al., 2018. Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp Mol Med, 50(11):1-16.

[69]Lee YS, Sah SK, Lee JH, et al., 2017. Human umbilical cord blood-derived mesenchymal stem cells ameliorate psoriasis-like skin inflammation in mice. Biochem Biophys Rep, 9:281-288.

[70]Leng ZK, Zhu RJ, Hou W, et al., 2020. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis, 11(2): 216-228.

[71]Liang B, Chen JH, Li T, et al., 2020. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells: a case report. Medicine (Baltimore), 99(31):e21429.

[72]Lu YR, Yuan Y, Wang XJ, et al., 2008. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther, 7(2):245-251.

[73]Ma T, Grayson WL, Fröhlich M, et al., 2009. Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog, 25(1):32-42.

[74]Maqbool M, Algraittee SJR, Boroojerdi MH, et al., 2020. Human mesenchymal stem cells inhibit the differentiation and effector functions of monocytes. Innate Immun, 26(5): 424-434.

[75]Marędziak M, Tomaszewski K, Polinceusz P, et al., 2017. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. Electromagn Biol Med, 36(1):45-54.

[76]Marmotti A, Peretti GM, Mattia S, et al., 2018. Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: a potential strategy for tendon repair—an in vitro study. Stem Cells Int, 2018:9048237.

[77]Mayer-Wagner S, Passberger A, Sievers B, et al., 2011. Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics, 32(4):283-290.

[78]McClarren B, Olabisi R, 2018. Strain and vibration in mesenchymal stem cells. Int J Biomater, 2018:8686794.

[79]Miskon A, Uslama J, 2011. A preliminary study on magnetic fields effects on stem cell differentiation. In: Osman NAA, Abas WABW, Wahab AKA, et al. (Eds.), 5th Kuala Lumpur International Conference on Biomedical Engineering 2011. IFMBE Proceedings, Vol. 35. Springer, Berlin, Heidelberg, p.805-810.

[80]Miskon A, Abdul Hamid H, Ramasamy R, et al., 2018. Enhanced proliferation potential of human umbilical cord mesenchymal stem cells through suspension induction and electromagnetic field exposure. In: vo van T, Nguyen Le T, Nguyen Duc T (Eds.), 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6). BME 2017. IFMBE Proceedings, Vol. 63. Springer, Singapore, p.563-566.

[81]Mushahary D, Spittler A, Kasper C, et al., 2018. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A, 93(1):19-31.

[82]Ng F, Boucher S, Koh S, et al., 2008. PDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood, 112(2):295-307.

[83]Ongaro A, Pellati A, Bagheri L, et al., 2014. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics, 35(6):426-436.

[84]Ongaro A, Pellati A, Setti S, et al., 2015. Electromagnetic fields counteract Il-1β activity during chondrogenesis of bovine mesenchymal stem cells. J Tissue Eng Regen Med, 9(12):E229-E238.

[85]Parate D, Franco-Obregón A, Fröhlich J, et al., 2017. Enhancement of mesenchymal stem cell chondrogenesis with short-term low intensity pulsed electromagnetic fields. Sci Rep, 7:9421.

[86]Parate D, Kadir ND, Celik C, et al., 2020. Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration. Stem Cell Res Ther, 11:46.

[87]Park CW, Kim KS, Bae S, et al., 2009. Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int J Stem Cells, 2(1):59-68.

[88]Park EH, Lim HS, Lee S, et al., 2018. Intravenous infusion of umbilical cord blood-derived mesenchymal stem cells in rheumatoid arthritis: a phase Ia clinical trial. Stem Cells Transl Med, 7(9):636-642.

[89]Pesce M, Patruno A, Speranza L, et al., 2013. Extremely low frequency electromagnetic field and wound healing: implication of cytokines as biological mediators. Eur Cytokine Netw, 24(1):1-10.

[90]Pittenger MF, Mackay AM, Beck SC, et al., 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411):143-147.

[91]Poh PSP, Seeliger C, Unger M, et al., 2018. Osteogenic effect and cell signaling activation of extremely low-frequency pulsed electromagnetic fields in adipose-derived mesenchymal stromal cells. Stem Cells Int, 2018:5402853.

[92]Pricola KL, Kuhn NZ, Haleem-Smith H, et al., 2009. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem, 108(3):577-588.

[93]Pytlík, Slanař, Stehlík, et al., 2011. Production of clinical grade mesenchymal stromal cells. In: Eberli D (Ed.), Regenerative Medicine and Tissue Engineering—Cells and Biomaterials. InTech, Rijeka, p.145-178.

[94]Qiu XS, Li XG, Chen YX, 2020. Pulsed electromagnetic field (PEMF): a potential adjuvant treatment for infected nonunion. Med Hypotheses, 136:109506.

[95]Ramasamy R, Krishna K, Maqbool M, et al., 2010. The effect of human mesenchymal stem cell on neutrophil oxidative burst. Malays J Med Health Sci, 6(2):11-17.

[96]Ross CL, 2017. The use of electric, magnetic, and electromagnetic field for directed cell migration and adhesion in regenerative medicine. Biotechnol Prog, 33(1):5-16.

[97]Ross CL, Harrison BS, 2013. Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages. J Inflamm Res, 6:45-51.

[98]Ross CL, Siriwardane M, Almeida-Porada G, et al., 2015. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res, 15(1):96-108.

[99]Ross CL, Pettenati MJ, Procita J, et al., 2018. Evaluation of cytotoxic and genotoxic effects of extremely low-frequency electromagnetic field on mesenchymal stromal cells. Glob Adv Health Med, 7:1-7.

[100]Ross CL, Zhou Y, McCall CE, et al., 2019. The use of pulsed electromagnetic field to modulate inflammation and improve tissue regeneration: a review. Bioelectricity, 1(4): 247-259.

[101]Sarmadi VH, Heng FS, Ramasamy R, 2008. The effect of human mesenchymal stem cells on tumour cell proliferation. Med J Malaysia, 63(Suppl A):63-64.

[102]Sarmadi VH, Ahmadloo S, Boroojerdi MH, et al., 2020. Human mesenchymal stem cells-mediated transcriptomic regulation of leukemic cells in delivering anti-tumorigenic effects. Cell Transplant, 29:1-13.

[103]Schaefer T, Steiner R, Lengerke C, 2020. Sox2 and p53 expression control converges in PI3K/AKT signaling with versatile implications for stemness and cancer. Int J Mol Sci, 21(14):4902.

[104]Seo N, Lee SH, Ju KW, et al., 2018. Low-frequency pulsed electromagnetic field pretreated bone marrow-derived mesenchymal stem cells promote the regeneration of crush-injured rat mental nerve. Neural Regen Res, 13(1):145-153.

[105]Seong Y, Moon J, Kim J, 2014. Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields. Life Sci, 102(1):16-27.

[106]Shu L, Niu CM, Li RY, et al., 2020. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther, 11:361.

[107]Shupak NM, Prato FS, Thomas AW, 2003. Therapeutic uses of pulsed magnetic-field exposure: a review. URSI Radio Sci Bull, 2003(307):9-32.

[108]Solchaga LA, Penick K, Porter JD, et al., 2005. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol, 203(2):398-409.

[109]Somoza RA, Welter JF, Correa D, et al., 2014. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev, 20(6): 596-608.

[110]Song JS, Hong KT, Kim NM, et al., 2020. Implantation of allogenic umbilical cord blood-derived mesenchymal stem cells improves knee osteoarthritis outcomes: two-year follow-up. Regen Ther, 14:32-39.

[111]Song MY, Zhao DM, Wei S, et al., 2014a. The effect of electromagnetic fields on the proliferation and the osteogenic or adipogenic differentiation of mesenchymal stem cells modulated by dexamethasone. Bioelectromagnetics, 35(7):479-490.

[112]Song MY, Yu JZ, Zhao DM, et al., 2014b. The time-dependent manner of sinusoidal electromagnetic fields on rat bone marrow mesenchymal stem cells proliferation, differentiation, and mineralization. Cell Biochem Biophys, 69(1):47-54.

[113]Sotiropoulou PA, Perez SA, Salagianni M, et al., 2006. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells, 24(2):462-471.

[114]Sun LY, Hsieh DK, Yu TC, et al., 2009. Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics, 30(4):251-260.

[115]Sun XJ, Gao X, Zhou LY, et al., 2013. PDGF-BB-induced MT1-MMP expression regulates proliferation and invasion of mesenchymal stem cells in 3-dimensional collagen via MEK/ERK1/2 and PI3K/AKT signaling. Cell Signal, 25(5):1279-1287.

[116]Sun ZC, Ge JL, Guo B, et al., 2016. Extremely low frequency electromagnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse. Sci Rep, 6:21774.

[117]Tamama K, Kawasaki H, Wells A, 2010. Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol, 2010:795385.

[118]Tang LL, Jiang YA, Zhu MF, et al., 2020. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19. Front Med, 14(5):664-673.

[119]Thibault RA, Baggett LS, Mikos AG, et al., 2010. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Tissue Eng Part A, 16(2):431-440.

[120]Touchstone H, Bryd R, Loisate S, et al., 2019. Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex. NPJ Microgravity, 5:11.

[121]Tu C, Xiao YF, Ma YZ, et al., 2018. The legacy effects of electromagnetic fields on bone marrow mesenchymal stem cell self-renewal and multiple differentiation potential. Stem Cell Res Ther, 9:215.

[122]Ude CC, Miskon A, Idrus RBH, et al., 2018. Application of stem cells in tissue engineering for defense medicine. Mil Med Res, 5:7.

[123]Volarevic V, Gazdic M, Markovic BS, et al., 2017. Mesenchymal stem cell-derived factors: immuno-modulatory effects and therapeutic potential. BioFactors, 43(5):633-644.

[124]Volarevic V, Markovic BS, Gazdic M, et al., 2018. Ethical and safety issues of stem cell-based therapy. Int J Med Sci, 15(1):36-45.

[125]Wang J, An YX, Li FJ, et al., 2014. The effects of pulsed electromagnetic field on the functions of osteoblasts on implant surfaces with different topographies. Acta Biomater, 10(2):975-985.

[126]Wang LM, Wang LH, Cong XL, et al., 2013. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev, 22(24):3192-3202.

[127]Wang SG, Hsu NC, Wang SM, et al., 2020. Successful treatment of plaque psoriasis with allogeneic gingival mesenchymal stem cells: a case study. Case Rep Dermatol Med, 2020:4617520.

[128]Widowati W, Wijaya L, Bachtiar I, et al., 2014. Effect of oxygen tension on proliferation and characteristics of Wharton’s jelly-derived mesenchymal stem cells. Biomarkers Genomic Med, 6(1):43-48.

[129]Winer JP, Janmey PA, McCormick ME, et al., 2009. Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A, 15(1): 147-154.

[130]Wu LZ, Zhang GR, Guo CB, et al., 2020. Intracellular Ca2+ signaling mediates IGF-1-induced osteogenic differentiation in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun, 527(1):200-206.

[131]Yan JH, Dong L, Zhang BH, et al., 2010. Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagn Biol Med, 29(4):165-176.

[132]Yang YHK, Ogando CR, See CW, et al., 2018. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther, 9:131.

[133]Yong Y, Ming ZD, Feng L, et al., 2016. Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. J Tissue Eng Regen Med, 10(10):E537-E545.

[134]Zhang MS, Li XP, Bai LM, et al., 2013. Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: an in vitro study. Bioelectromagnetics, 34(1):74-80.

[135]Zhang XJ, Zhang JB, Qu XM, et al., 2007. Effects of different extremely low-frequency electromagnetic fields on osteoblasts. Electromagn Biol Med, 26(3):167-177.

[136]Zhang Y, Ravikumar M, Ling L, et al., 2021. Age-related changes in the inflammatory status of human mesenchymal stem cells: implications for cell therapy. Stem Cell Reports, 16(4):694-707.

[137]Zhang YC, Yan JY, Xu HR, et al., 2018. Extremely low frequency electromagnetic fields promote mesenchymal stem cell migration by increasing intracellular Ca2+ and activating the FAK/Rho GTPases signaling pathways in vitro. Stem Cell Res Ther, 9:143.

[138]Zhou J, He HC, Yang L, et al., 2012. Effects of pulsed electromagnetic fields on bone mass and Wnt/β‍-catenin signaling pathway in ovariectomized rats. Arch Med Res, 43(4):274-282.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE