Full Text:   <4077>

CLC number: S98; TS254

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2009-07-06

Cited: 30

Clicked: 8009

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2009 Vol.10 No.8 P.572-579

http://doi.org/10.1631/jzus.B0920081


Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen


Author(s):  Yong-liang ZHUANG, Xue ZHAO, Ba-fang LI

Affiliation(s):  College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China

Corresponding email(s):   bfli@ouc.edu.cn

Key Words:  Jellyfish umbrella collagen, Hydrolysis, Antioxidant activity, Response surface methodology (RSM)



Abstract: 
To optimize the hydrolysis conditions to prepare hydrolysates of jellyfish umbrella collagen with the highest hydroxyl radical scavenging activity, collagen extracted from jellyfish umbrella was hydrolyzed with trypsin, and response surface methodology (RSM) was applied. The optimum conditions obtained from experiments were pH 7.75, temperature (T) 48.77 °C, and enzyme-to-substrate ratio ([E]/[S]) 3.50%. The analysis of variance in RSM showed that pH and [E]/[S] were important factors that significantly affected the process (P<0.05 and P<0.01, respectively). The hydrolysates of jellyfish umbrella collagen were fractionated by high performance liquid chromatography (HPLC), and three fractions (HF-1>3000 Da, 1000 Da<HF-2<3000 Da, and HF-3<1000 Da) were collected. The HF-2 fraction had the highest hydroxyl radical scavenging activity with the highest yield compared with the other two fractions. Furthermore, HF-2 also showed the strongest Cu2+-chelating ability and the best tyrosinase-inhibitory activity.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE