Full Text:   <3145>

CLC number: R735

On-line Access: 

Received: 2006-12-06

Revision Accepted: 2007-01-10

Crosschecked: 0000-00-00

Cited: 14

Clicked: 6169

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2007 Vol.8 No.3 P.170-176


What we know about ST13, a co-factor of heat shock protein, or a tumor suppressor?

Author(s):  SHI Zheng-zheng, ZHANG Jia-wei, ZHENG Shu

Affiliation(s):  The Second Affiliated Hospital, Cancer Institute, School of Medicine, Zhejiang University, Hangzhou 310009, China

Corresponding email(s):   zhengshu@zju.edu.cn

Key Words:  ST13, Hip, p48, Hsc/Hsp70, Heat shock protein, Protein folding, Steroid receptor, Tumorigenicity

SHI Zheng-zheng, ZHANG Jia-wei, ZHENG Shu. What we know about ST13, a co-factor of heat shock protein, or a tumor suppressor?[J]. Journal of Zhejiang University Science B, 2007, 8(3): 170-176.

@article{title="What we know about ST13, a co-factor of heat shock protein, or a tumor suppressor?",
author="SHI Zheng-zheng, ZHANG Jia-wei, ZHENG Shu",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T What we know about ST13, a co-factor of heat shock protein, or a tumor suppressor?
%A SHI Zheng-zheng
%A ZHANG Jia-wei
%J Journal of Zhejiang University SCIENCE B
%V 8
%N 3
%P 170-176
%@ 1673-1581
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.B0170

T1 - What we know about ST13, a co-factor of heat shock protein, or a tumor suppressor?
A1 - SHI Zheng-zheng
A1 - ZHANG Jia-wei
A1 - ZHENG Shu
J0 - Journal of Zhejiang University Science B
VL - 8
IS - 3
SP - 170
EP - 176
%@ 1673-1581
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.B0170

This article is to summarize the molecular and functional analysis of the gene “suppression of tumorigenicity 13” (ST13). ST13 is in fact the gene encoding Hsp70 interacting protein (hip), a co-factor (co-chaperone) of the 70-kDa heat shock proteins (hsc/Hsp70). By collaborating with other positive co-factors such as Hsp40 and the Hsp70-Hsp90 organizing protein (Hop), or competing with negative co-factors such as Bcl2-associated athanogen 1 (Bag1), hip facilitates may facilitate the chaperone function of hsc/Hsp70 in protein folding and repair, and in controlling the activity of regulatory proteins such as steroid receptors and regulators of proliferation or apoptosis. Although the nomenclature of ST13 implies a role in the suppression of tumorigenicity (ST), to date available experimental data are not sufficient to support its role in cancer development, except for the possible down-regulation of ST13 in gastric and colorectal cancers. Further investigation of this gene at the physiological level would benefit our understanding of diseases such as endocrinological disorders, cancer, and neurodegeneration commonly associated with protein misfolding.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Alberti, S., Demand, J., Esser, C., Emmerich, N., Schild, H., Höhfeld, J., 2002. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J. Biol. Chem., 277(48):45920-45927.

[2] Alberti, S., Esser, C., Höhfeld, J., 2003. BAG-1—a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones, 8(3):225-231.

[3] Ballinger, C.A., Connell, P., Wu, Y., Hu, Z., Thompson, L.J., Yin, L.Y., Patterson, C., 1999. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell Biol., 19(6):4535-4545.

[4] Barral, J.M., Broadley, S.A., Schaffar, G., Hartl, F.U., 2004. Roles of molecular chaperones in protein misfolding diseases. Semin. Cell Dev. Biol., 15(1):17-29.

[5] Bukau, B., Horwich, A.L., 1998. The Hsp70 and Hsp60 chaperone machines. Cell, 92(3):351-366.

[6] Cao, J., Cai, X., Zheng, L., Geng, L., Shi, Z., Pao, C.C., Zheng, S., 1997. Characterization of colorectal-cancer-related cDNA clones obtained by subtractive hybridization screening. J. Cancer Res. Clin. Oncol., 123(8):447-451.

[7] Castells, A., Gusella, J.F., Ramesh, V., Rustgi, A.K., 2000. A region of deletion on chromosome 22q13 is common to human breast and colorectal cancers. Cancer Res., 60(11):2836-2839.

[8] Chen, S., Smith, D.F., 1998. Hop as an adaptor in the heat shock protein 70 (Hsp70) and Hsp90 chaperone machinery. J. Biol. Chem., 273(52):35194-35200.

[9] Ciocca, D.R., Calderwood, S.K., 2005. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 10(2):86-103.

[10] Ciocca, D.R., Clark, G.M., Tandon, A.K., Fuqua, S.A., Welch, W.J., McGuire, W.L., 1993. Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J. Natl. Cancer Inst., 85(7):570-574.

[11] Dong, Q.H., Zheng, S., Hu, Y., Chen, G.X., Ding, J.Y., 2005. Evaluation of ST13 gene expression in colorectal cancer patients. J. Zhejiang Univ. Sci. B, 6(12):1170-1175.

[12] Esser, C., Alberti, S., Hohfeld, J., 2004. Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim. Biophys. Acta, Mol. Cell Res., 1695(1-3):171-188.

[13] Evans, C.G., Wisen, S., Gestwicki, J.E., 2006. Heat shock proteins 70 and 90 inhibit early stages of amyloid beta (1-42) aggregation in vitro. J. Biol. Chem., 281(44):33182-33191.

[14] Fan, G.H., Yang, W., Sai, J., Richmond, A., 2002. Hsc/Hsp70 interacting protein (hip) associates with CXCR2 and regulates the receptor signaling and trafficking. J. Biol. Chem., 277(8):6590-6597.

[15] Freeman, B.C., Myers, M.P., Schumacher, R., Morimoto, R.I., 1995. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J., 14(10):2281-2292.

[16] Frydman, J., Höhfeld, J., 1997. Chaperones get in touch: the Hip-Hop connection. Trends Biochem. Sci., 22(3):87-92.

[17] Hartl, F.U., 1996. Molecular chaperones in cellular protein folding. Nature, 381(6583):571-579.

[18] Hernandez, M.P., Sullivan, W.P., Toft, D.O., 2002. The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J. Biol. Chem., 277(41):38294-38304.

[19] Höhfeld, J., Jentsch, S., 1997. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J., 16(20):6209-6216.

[20] Höhfeld, J., Minami, Y., Hartl, F.U., 1995. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell, 83(4):589-598.

[21] Irmer, H., Höhfeld, J., 1997. Characterization of functional domains of the eukaryotic co-chaperone Hip. J. Biol. Chem., 272(4):2230-2235.

[22] Jäättelä, M., 1999. Escaping cell death: survival proteins in cancer. Exp. Cell Res., 248(1):30-43.

[23] Jäättelä, M., Wissing, D., Kokholm, K., Kallunki, T., Egeblad, M., 1998. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J., 17(21):6124-6134.

[24] Kanelakis, K.C., Murphy, P.J., Galigniana, M.D., Morishima, Y., Takayama, S., Reed, J.C., Toft, D.O., Pratt, W.B., 2000. Hsp70 interacting protein Hip does not affect glucocorticoid receptor folding by the hsp90-based chaperone machinery except to oppose the effect of BAG-1. Biochemistry, 39(46):14314-14321.

[25] Klettner, A., 2004. The induction of heat shock proteins as a potential strategy to treat neurodegenerative disorders. Drug News Perspect., 17(5):299-306.

[26] Kosano, H., Stensgard, B., Charlesworth, M.C., McMahon, N., Toft, D., 1998. The assembly of progesterone receptor-hsp90 complexes using purified proteins. J. Biol. Chem., 273(49):32973-32979.

[27] Li, G., Zhang, S.Z., 2000. The different expression of the tumor suppressor gene ST13 in colon cancer and adjacent tumor tissue. Shiyong Zhongliu Zazhi, 15(4):262-263 (in Chinese).

[28] Mayer, M.P., Bukau, B., 2005. Hsp70 chaperones: cellular functions and molecular mechanism. CMLS Cell. Mol. Life Sci., 62(6):670-684.

[29] Mo, Y., Zheng, S., Shen, D., 1996. Differential expression of HSU17714 gene in colorectal cancer and normal colonic mucosa. Zhonghua Zhongliu Zazhi, 18(4):241-243 (in Chinese).

[30] Mo, Y.Q., Zheng, S., Shen, D.J., Cai, X.H., Cao, J., Zhu, L.J., 1997a. The expression of p53 and HSU17714 mRNA in colon cancer and normal tissue. Aizheng, 16(1):12-15 (in Chinese).

[31] Mo, Y.Q., Zheng, L., Cai, X.H., 1997b. Expression of HSU17714 gene in colorectal cancer and other tumors. Zhongguo Zhongliu Linchuang, 24(7):504-508 (in Chinese).

[32] Murata, S., Minami, Y., Minami, M., Chiba, T., Tanaka, K., 2001. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep., 2(12):1133-1138.

[33] Murata, S., Chiba, T., Tanaka, K., 2003. CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int. J. Biochem. Cell Biol., 35(5):572-578.

[34] Neckers, L., Neckers, K., 2005. Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics—an update. Expert Opin. Emerg. Drugs, 10(1):137-149.

[35] Nelson, G.M., Prapapanich, V., Carrigan, P.E., Roberts, P.J., Riggs, D.L., Smith, D.F., 2004. The heat shock protein 70 cochaperone hip enhances functional maturation of glucocorticoid receptor. Mol. Endocrinol., 18(7):1620-1630.

[36] Nollen, E.A., Kabakov, A.E., Brunsting, J.F., Kanon, B., Hohfeld, J., Kampinga, H.H., 2001. Modulation of in vivo HSP70 chaperone activity by Hip and Bag-1. J. Biol. Chem., 276(7):4677-4682.

[37] Nylandsted, J., Rohde, M., Brand, K., Bastholm, L., Elling, F., Jäättelä, M., 2000. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc. Natl. Acad. Sci. USA, 97(14):7871-7876.

[38] Prapapanich, V., Chen, S., Nair, S.C., Rimerman, R.A., Smith, D.F., 1996a. Molecular cloning of human p48, a transient component of progesterone receptor complexes and an Hsp70-binding protein. Mol. Endocrinol., 10(4):420-431.

[39] Prapapanich, V., Chen, S., Toran, E.J., Rimerman, R.A., Smith, D.F., 1996b. Mutational analysis of the hsp70-interacting protein Hip. Mol. Cell. Biol., 16(11):6200-6207.

[40] Prapapanich, V., Chen, S., Smith, D.F., 1998. Mutation of Hip’s carboxy-terminal region inhibits a transitional stage of progesterone receptor assembly. Mol. Cell. Biol., 18(2):944-952.

[41] Shi, Z.Z., Zheng, S., Cai, X.H., Zhang, Y.L., Gu, J.R., Li, D.Z., 1992. Application of Subtractive Hybridization Technique in Screening for Human Colorectal Cancer-Related Genes. Proceedings of the First Conference of Chinese Cancer Research Foundation (CCRF). Quiyang, China, Abstract, p.157 (in Chinese).

[42] Smith, D.F., 1993. Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol. Endocrinol., 7(11):1418-1429.

[43] Smith, D.F., Whitesell, L., Nair, S.C., Chen, S., Prapapanich, V., Rimerman, R.A., 1995. Progesterone receptor structure and function altered by gsdanamycin, an hsp90 binding agent. Mol. Cell. Biol., 15(12):6804-6812.

[44] Sõti, C., Nagy, E., Giricz, Z., Vigh, L., Csermely, P., Ferdinandy, P., 2005. Heat shock proteins as emerging therapeutic targets. Br. J. Pharmacol., 146(6):769-780.

[45] Takayama, S., Xie, Z., Reed, J.C., 1999. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J. Biol. Chem., 274(2):781-786.

[46] Tissing, W.J., Meijerink, J.P., den Boer, M.L., Brinkhof, B., Pieters, R., 2005. mRNA expression levels of (co)chaperone molecules of the glucocorticoid receptor are not involved in glucocorticoid resistance in pediatric ALL. Leukemia, 19(5):727-733.

[47] Vargas-Roig, L.M., Fanelli, M.A., Lopez, L.A., Gago, F.E., Tello, O., Aznar, J.C., Ciocca, D.R., 1997. Heat shock proteins and cell proliferation in human breast cancer biopsy samples. Cancer Detect. Prev., 21(5):441-451.

[48] Velten, M., Villoutreix, B.O., Ladjimi, M.M., 2000. Quaternary structure of the HSC70 cochaperone HIP. Biochemistry, 39(2):307-315.

[49] Velten, M., Gomez-Vrielynck, N., Chaffotte, A., Ladjimi, M.M., 2002. Domain structure of the HSC70 cochaperone, HIP. J. Biol. Chem., 277(1):259-266.

[50] Wang, L.B., Zheng, S., Zhang, S.Z., Peng, J.P., Ye, F., Fang, S.C., Wu, J.M., 2005. Expression of ST13 in colorectal cancer and adjacent normal tissues. World J. Gastroenterol., 11(3):336-339.

[51] Zhang, Y., Cai, X., Schlegelberger, B., Zheng, S., 1998. Assignment of human putative tumor suppressor genes ST13 (alias SNC6) and ST14 (alias SNC19) to human chromosome bands 22q13 and 11q24→q25 by in situ hybridization. Cytogenet. Cell Genet., 83(1-2):56-57.

[52] Zheng, S., Cai, X.H., Shi, Z.Z., Cao, J., Geng, L.Y., Zheng, L., 1994. Application of Subtractive Hybridization in Screening for Colorectal Cancer-Related Genes. Proceedings of the Fourth Sino-Japanese Symposium on Colorectal Cancer. Hangzhou, China, Abstract, E1 (in Chinese).

[53] Zheng, S., Cai, X., Cao, J., Zheng, L., Geng, L., Zhang,Y., Gu, J., Shi, Z., 1997. Screening and identification of down-regulated genes in colorectal carcinoma by subtractive hybridization: a method to identify putative tumor suppressor genes. Chin. Med. J., 110(7):543-547.

[54] Zheng, S., Shao, J., Dong, Q., Peng, J., Zhang, S.Z., 2005. Characterization of ST13 protein expression in human colorectal cancer tissues. Chin. German J. Clin. Oncol., 4(1):1-7.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE