CLC number: TP242.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 3
Clicked: 5834
Dong-dong YE, Guo-zheng YAN, Kun-dong WANG, Guan-ying MA. Development of a non-cable whole tectorial membrane micro-robot for an endoscope[J]. Journal of Zhejiang University Science A, 2008, 9(8): 1141-1149.
@article{title="Development of a non-cable whole tectorial membrane micro-robot for an endoscope",
author="Dong-dong YE, Guo-zheng YAN, Kun-dong WANG, Guan-ying MA",
journal="Journal of Zhejiang University Science A",
volume="9",
number="8",
pages="1141-1149",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0720074"
}
%0 Journal Article
%T Development of a non-cable whole tectorial membrane micro-robot for an endoscope
%A Dong-dong YE
%A Guo-zheng YAN
%A Kun-dong WANG
%A Guan-ying MA
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 8
%P 1141-1149
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0720074
TY - JOUR
T1 - Development of a non-cable whole tectorial membrane micro-robot for an endoscope
A1 - Dong-dong YE
A1 - Guo-zheng YAN
A1 - Kun-dong WANG
A1 - Guan-ying MA
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 8
SP - 1141
EP - 1149
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0720074
Abstract: A novel non-cable whole tectorial membrane micro-robot for an endoscope is developed. The micro-robot we have fabricated and tested can propel itself in the intestine tract of a pig in an autonomous manner by earthworm-like locomotion. The silicone of bellow shape is laid over the outer surface of the micro-robot to reduce the affection of the viscoelastic properties of the intestine. wireless power transfer and communication systems are employed to realize the non-cable locomotion of the micro-robot. The prototype of the micro-robot is 13.5 mm in diameter and 108 mm in length. The experimental results show that the towing force for the micro-robot is about 0.8 N, which is much smaller than the maximum driving force 2.55 N of the linear actuator. The supplying power of the wireless power transfer system fulfills the needs of the micro-robot system and the micro-robot can creep reliably in the large intestine of a pig and other contact environments.
[1] Dario, P., Ciarletta, P., Menciassim, A., Kim, B., 2002. Modelling and Experimental Validation of the Locomotion of Endoscopic Robots in the Colon. ISER 02 Int. Symp. on Experimental Engineering, Santangelo, Italy, p.445-453.
[2] Fung, Y.C., 1990. Biomechanics: Motion, Flow, Stress and Growth. Springer-Verlag, New York, p.353-447.
[3] Gorini, S., Quirini, M., Menciassi, A., Permorio, G., Stefanini, C., Dario, P., 2006. A Novel SMA-based Actuator for a Legged Endoscopic Capsule. First IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, Pisa, Italy, p.443-449.
[4] Gregersen, H., 2006. Biomechanics of the Gastrointestinal Tract. People’s Medical Publishing House, Beijing, China, p.216-236 (in Chinese).
[5] Heetderks, W.J., 1988. RF powering of millimeter- and submillimeter-sized neural prosthetic implants. IEEE Trans. on Biomed. Eng., 35(5):323-327.
[6] Kim, B., Lim, H.Y., Kim, K.D., Jeong, Y.K., Park, J.O., 2002. A Locomotive Mechanism for a Robotic Colonoscopy. IEEE/RSJ Int. Conf. on Intelligent Robots and System IROS-02, Lausanne, Switzerland, p.1373-1378.
[7] Kim, B., Lee, S., Park, J.H., Park, J.O., 2005. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys. IEEE/ASME Trans. on Mechatron., 10(1):77-86.
[8] Kopparthi, S., Ajmera, P.K., 2004. Power Delivery for Remotely Located Microsystems. IEEE Region 5 Conf.: Annual Technical and Leadership Workshop, Norman, USA, p.31-39.
[9] Kuster, N., Balzano, Q., 1992. Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz. IEEE Trans. on Vehic. Technol., 41(1):17-23.
[10] Lenaerts, B., Puers, R., 2007. An inductive power link for a wireless endoscope. Biosens. Bioelectron., 22(7):1390-1395.
[11] Li, J., Huang, P., Luo, H.D., 2006. Experimental study on friction of micro machines sliding in animal intestines. Lubric. Eng., 3:119-122 (in Chinese).
[12] Ma, G.Y., Yan, G.Z., He, X., 2007. Power transmission for gastrointestinal microsystems using inductive coupling. Physiol. Meas., 28(3):9-18.
[13] Menciassi, A., Moglia, A., Gorini, S., Permorio, G., Stefanini, C., Dario, P., 2005a. Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract. J. Micromech. Microeng., 15(11):2045-2055.
[14] Menciassi, A., Gorini, S., Moglia, A., Pernorio, G., Stefanini, C., Dario, P., 2005b. Clamping Tools of a Capsule for Monitoring the Gastrointestinal Tract. Proc. IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, p.1309-1314.
[15] Mylonaki, M., Fritscher-Ravens, A., Swain, P., 2003. Wireless capsule endoscopy: a comparison with push enteroscopy in patients with gastroscopy and colonoscopy negative gastrointestinal bleeding. Gut, 52(8):1122-1126.
[16] Pandit, V., McDermott, R., Lazzi, G., Furse, C., Gandhi, O., 1996. Electrical Energy Absorption in the Human Head from a Cellular Telephone. IEEE Visualization Proc., San Francisco, USA, p.371-374.
[17] Phee, L., Menciassi, A., Gorini, S., Pernorio, G., Arena, A., Dario, P., 2002a. An Innovative Locomotion Principle for Mini Robots Moving in the Gastrointestinal Tract. IEEE Int. Conf. on Robotics and Automation, Washington DC, USA, 2:1125-1130.
[18] Phee, L., Accoto, D., Menciassi, A., Stefanini, C., Carrozza, M.C., Dario, P., 2002b. Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Trans. on Biomed. Eng., 49(6):613-616.
[19] Phee, L., Menciassi, A., Accoto, D., Stefanini, C., Dario, P., 2003. Analysis of robotic locomotion devices for the gastrointestinal tract. Rob. Res., 6:467-483.
[20] Repacholi, M.H., 1998. Low-level exposure to radiofrequency electromagnetica fields: health effects and research needs. Bioelectromagnetics, 19:1-19.
[21] Son, J.H., Hwang, J.S., Songa, K.M., Ryub, M.H., Kima, J.D., Baanga, S., 2005. Design of Millimeter-sized Coils for Power Transmission to in vivo Robotic Capsules. Proc. 3rd IASTED Int. Conf. on Biomedical Engineering, Innsbruck, Austria, p.499-502.
[22] Stefanini, C., Menciassi, A., Dario, P., 2006. Modeling and experiments on a legged microrobot locomoting in a tubular, compliant and slippery environment. Int. J. Rob. Res., 25(5-6):551-560.
[23] Valdastri, P., Menciassi, A., Arena, A., Caccamo, C., Dario, P., 2004. An implantable telemetry platform system for in vivo monitoring of physiological parameters. IEEE Trans. on Inf. Technol. Biomed., 8(3):271-278.
[24] Wang, K.D., Yan, G.Z., 2007. Micro robot prototype for colonoscopy and in vitro experiments. J. Med. Eng. Technol., 31(1):24-28.
[25] Wang, K.D., Yan, G.Z., Zuo, J.Y., 2006. Active micro robot colonoscopy’s navigation based on vision. High Technol. Lett., 16(4):372-376.
Open peer comments: Debate/Discuss/Question/Opinion
<1>