Full Text:   <4000>

CLC number: V414

On-line Access: 2014-01-27

Received: 2013-06-13

Revision Accepted: 2013-09-23

Crosschecked: 2014-01-07

Cited: 0

Clicked: 7266

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.2 P.83-96


Design and analysis of bidirectional deployable parabolic cylindrical antenna

Author(s):  Tian Yu, Fu-ling Guan, Lu Dai

Affiliation(s):  . College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   ciegfl@zju.edu.cn

Key Words:  Parabolic cylindrical antenna, Geometric analysis, Deploying and folding process, Frequency test, Structural analysis, Radiation property

Share this article to: More |Next Article >>>

Tian Yu, Fu-ling Guan, Lu Dai. Design and analysis of bidirectional deployable parabolic cylindrical antenna[J]. Journal of Zhejiang University Science A, 2014, 15(2): 83-96.

@article{title="Design and analysis of bidirectional deployable parabolic cylindrical antenna",
author="Tian Yu, Fu-ling Guan, Lu Dai",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Design and analysis of bidirectional deployable parabolic cylindrical antenna
%A Tian Yu
%A Fu-ling Guan
%A Lu Dai
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 2
%P 83-96
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300202

T1 - Design and analysis of bidirectional deployable parabolic cylindrical antenna
A1 - Tian Yu
A1 - Fu-ling Guan
A1 - Lu Dai
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 2
SP - 83
EP - 96
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300202

A bidirectional deployable parabolic cylindrical reflector for an L-band synthetic aperture radar is presented in this study, in which a self-deployed antenna with low weight was designed. The antenna consists of four curved surfaces formed from thin sheets of composite materials connected by hinges along the edges, and the reflective surface is provided by the front surface. The edge profiles of connecting lines were obtained through geometric analysis. A scaled model, including design and manufacture, was demonstrated to validate the process from the folded state to the fully deployed state. The non-contact synchronous vision measuring method was used to test the basic frequency of the scaled model, and the test results gave the verification of the analyses. Compared with the existing unidirectional deployable antenna, this new type of bidirectional deployable antenna can be applied to larger-size antennas and has better performance because the glass-woven tape connections were substituted with more reliable hinges. Static, modal, harmonic response, and transient response analyses of the full-sized reflector structure were modeled with the commercial finite element (FE) package ABAQUS. The modeling techniques were developed to predict the structural dynamic behavior of the reflector and the results showed that the first natural frequency was 0.865 Hz, and the reflector structure had good stiffness in three directions. This proposed structure has very high stiffness-to-mass ratio because of its hollow solid construction. A preliminary simulation of radiation properties of the parabolic cylindrical antenna, fed by an off-set linear feed horn array, was conducted to obtain the radiation pattern of the feed and the reflector.


创新要点:基于剑桥大学提出的Deployable Support Structure,将反射面分成两块实现横向折叠,进一步减小收拢状态下的体积;采用非接触式方法进行了基频测试,提出了增加结构展开后刚度的几种方法,结果表明增加侧板和采用large curved tape springs 作为边框的方式能够有效增加结构刚度。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Eom, S.Y., Jung, Y.B., Ganin, S.A., 2011. A cylindrical shaped-reflector antenna with a linear feed array for shaping complex beam patterns. Progress in Electromagnetics Research, 119:477-495. 

[2] Greschik, G., Mikulas, M.M., Freeland, R.E., 2000. Scaling of nonlinear phenomena with emphasis on thin film deployable structures.  IUTAM-IASS Symposium on Deployable Structures: Theory and Applications. Springer Netherlands,the Netherlands 80:127-136. 

[3] Johnston, J., Lienard, S., 2001. Modeling and analysis of structural dynamics for a one-tenth scale model NGST sunshield. , 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Seattle, USA, 16-19. :16-19. 

[4] Jorgensen, J., Louis, E.L., Hinkle, J.D., 2005. Dynamics of an elastically deployable solar array: ground test model validation. , 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Austin, USA, 1-14. :1-14. 

[5] Lienard, S., Johnston, J., Ross, B., 2001. Dynamic testing of a subscale sunshield for the next generation space telescope (NGST). , 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Seattle, USA, :

[6] Marks, G.W., Reilly, M.T., Huff, R.L., 2002. The lightweight deployable antenna for the MARSIS experiment on the Mars express spacecraft. , Proceedings of the 36th Aerospace Mechanisms Symposium, Glenn Research Center, Cleveland, USA, 183-196. :183-196. 

[7] Mobrem, M., Adams, D.S., 2006. Analysis of the lenticular jointed MARSIS antenna deployment. , 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, USA, :

[8] Seffen, K.A., Pellegrino, S., 1999. Deployment dynamics of tape springs. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 455(1983):1003-1048. 

[9] Soykasap, ., 2007. Folding design of composite structures. Composite Structures, 79(2):280-287. 

[10] Soykasap, ., Pellegrino, S., 2004. Deployable Synthetic Aperture Radar Reflector. CUED/D-STRUCT/TR209, Department of Engineering, University of Cambridge,:

[11] Soykasap, ., Karakaya, .., Trkmen, D., 2012. Curved large tape springs for an ultra-thin shell deployable reflector. Journal of Reinforced Plastics and Composites, 31(10):691-703. 

[12] Tsai, R.Y., 1987. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, 3(4):323-344. 

[13] Yee, J.C.H., Pellegrino, S., 2005. Folding of woven composite structures. Composites Part A: Applied Science and Manufacturing, 36(2):273-278. 

[14] Zhang, Z.Y., 1999. Flexible camera calibration by viewing a plane from unknown orientation. Proceedings of the 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, 1:666-673. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE