Full Text:   <1225>

CLC number: TG16

On-line Access: 2013-12-03

Received: 2013-06-18

Revision Accepted: 2013-10-22

Crosschecked: 2013-11-14

Cited: 0

Clicked: 3752

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.12 P.906-914


Wear behavior of copper-containing ferritic iron under a dry sliding condition*

Author(s):  Junaidi Syarif, Agung Iswadi, Mariyam Jameelah Ghazali, Zainuddin Sajuri, Mohd Zaidi Omar

Affiliation(s):  . Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Corresponding email(s):   syarif@eng.ukm.my

Key Words:  Steel, Hardness, Sliding wear, Work hardening, Plastic deformation

Junaidi Syarif, Agung Iswadi, Mariyam Jameelah Ghazali, Zainuddin Sajuri, Mohd Zaidi Omar. Wear behavior of copper-containing ferritic iron under a dry sliding condition[J]. Journal of Zhejiang University Science A, 2013, 14(12): 906-914.

@article{title="Wear behavior of copper-containing ferritic iron under a dry sliding condition",
author="Junaidi Syarif, Agung Iswadi, Mariyam Jameelah Ghazali, Zainuddin Sajuri, Mohd Zaidi Omar",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Wear behavior of copper-containing ferritic iron under a dry sliding condition
%A Junaidi Syarif
%A Agung Iswadi
%A Mariyam Jameelah Ghazali
%A Zainuddin Sajuri
%A Mohd Zaidi Omar
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 12
%P 906-914
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300211

T1 - Wear behavior of copper-containing ferritic iron under a dry sliding condition
A1 - Junaidi Syarif
A1 - Agung Iswadi
A1 - Mariyam Jameelah Ghazali
A1 - Zainuddin Sajuri
A1 - Mohd Zaidi Omar
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 12
SP - 906
EP - 914
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300211

The effect of solute Cu and Cu precipitates on the wear behavior of ferritic iron under an unlubricated condition was investigated. The specific wear rate of Cu-containing steel abruptly decreased up to 50 N of load, and then gradually decreased with further increased load. The specific wear rate of the as-quenched specimen, in which Cu was in a solid solution, was the lowest among all the specimens at low loads, and all specimens had almost the same specific wear rate at high loads. Subsurface observation showed that the hardness increments of all specimens decreased with increased depth below the worn surface. The as-quenched specimen had a relatively large depth of deformed region than the other specimens even though the increments in hardness were almost the same for all specimens at low loads. With the same hardness at an unworn state, the as-quenched and over-aged specimens exhibited a substantial increase in hardness and large deformed regions below the worn surfaces. This finding indicated that the enhancement in plastic deformation and work hardening led to the decrease in the specific wear rate of the as-quenched specimen at low loads and the improvement in the wear resistance of all specimens at high loads.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Archard, J.F., 1953. Contact and rubbing of flat surfaces. Journal of Applied Physics, 24(8):981-988. 

[2] Bressan, J.D., Daros, D.P., Sokolowski, A., Mesquita, R.A., Barbosa, C.A., 2008. Influence of hardness on the wear resistance of 17-4 PH stainless steel evaluated by the pin-on-disc testing. Journal of Materials Processing Technology, 205(1-3):353-359. 

[3] Busby, J.T., Hash, M.C., Was, G.S., 2005. The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. Journal of Nuclear Materials, 336(2-3):267-278. 

[4] Chan, K.S., Koike, M., Okabe, T., 2007. Modeling wear of cast Ti alloys. Acta Biomaterialia, 3(3):383-389. 

[5] Dowling, N.E., 2007.  Mechanical Behavior of Materials (3rd Edition). Pearson Prentice Hall,New Jersey :126-133. 

[6] Eyre, T.S., Maynard, D., 1971. Surface aspects of unlubricated metal-to-metal wear. Wear, 18(4):301-310. 

[7] Farrell, R.M., Eyre, T.S., 1970. The relationship between load and sliding distance in the initiation of mild wear in steels. Wear, 15(5):359-372. 

[8] Ghosh, S.K., Haldar, A., Chattopadhyay, P.P., 2007. Mechanical properties of directly air cooled copper added microalloyed steels. Materials Science and Technology, 23(11):1375-1380. 

[9] Gore, G.J., Gates, J.D., 1997. Effect of hardness on three very different forms of wear. Wear, 203-204:544-563. 

[10] Goto, H., Amamoto, Y., 2011. Improvement of wear resistance for carbon steel under unlubricated sliding and variable loading conditions. Wear, 270(11-12):725-736. 

[11] Gui, M.C., Kang, S.B., Lee, J.M., 2000. Wear of spray deposited Al-6Cu-Mn alloy under dry sliding conditions. Wear, 240(1-2):186-198. 

[12] Hirst, W., Lancaster, J.K., 1960. The influence of speed on metallic wear. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 259(1297):228-241. 

[13] Hornbogen, E., Glenn, R.C., 1960. A metallographic study of precipitation of copper from alpha iron. Transactions of the Metallurgical Society of AIME, 218(6):1064-1070. 

[14] Hutchings, I.M., 2001.  Tribology, Friction and Wear of Engineering Materials. Butterworth-Heinemann,Oxford :241-247. 

[15] Lancaster, J.K., 1967. The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear, 10(2):103-117. 

[16] Ling, Y., 1996. Uniaxial True Stress-strain after Necking. AMP Journal of Technology, 5:37-48. 

[17] Nakashima, K., Futamura, Y., Tsuchiyama, T., Takaki, S., 2002. Interaction between dislocation and copper particles in Fe-Cu alloys. ISIJ International, 42(12):1541-1545. 

[18] Noro, K., Takeuchi, M., Mizukami, Y., 1997. Necessity of scrap reclamation technologies and present conditions of technical development. ISIJ International, 37(3):198-206. 

[19] Oh, H.K., Yeon, K.H., 1998. Uniaxial tensile test and wear in metals. Journal of Materials Processing Technology, 79(1-3):113-124. 

[20] Othen, P.J., Jenkins, M.L., Smith, G.D.W., 1994. High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe. Philosophical Magazine A, 70(1):1-24. 

[21] Rai, D., Singh, B., Singh, J., 2007. Characterisation of wear behaviour of different microstructures in Ni-Cr-Mo-V steel. Wear, 263(1-6):821-829. 

[22] Rana, R., Bleck, W., Singh, S.B., Mohanty, O.N., 2007. Development of high strength interstitial free steel by copper precipitation hardening. Materials Letters, 61(14-15):2919-2922. 

[23] Russell, K.C., Brown, L.M., 1972. A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system. Acta Metallurgica, 20(7):969-974. 

[24] Sundstrm, A., Rendn, J., Olsson, M., 2001. Wear behaviour of some low alloyed steels under combined impact/abrasion contact conditions. Wear, 250(1-12):744-754. 

[25] Syarif, J., Hoshino, T., Tsuchiyama, T., Takaki, S., 2000. Effect of solute copper on hardness and ductile-to-brittle transition in α-iron. Tetsu-to-Hagan, (in Japanese),86(8):558-562. 

[26] Syarif, J., Tsuchiyama, T., Takaki, S., 2003. Mechanism of toughening in ferritic iron by solute copper at low temperature. ISIJ International, 43(7):1100-1104. 

[27] Syarif, J., Nakashima, K., Tsuchiyama, T., Takaki, S., 2007. Effect of solute copper on yield strength in dislocation-strengthened steels. ISIJ International, 47(2):340-345. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE